首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The studies about the effect of high pressure processing (HPP) on the myofibrillar proteins of crab meat are scarce in the literature. The aim of this study is to evaluate the effect of high pressure processing (HPP) at 100, 300 and 600 MPa (10 °C/5 min) on the muscular protein fractions of blue crab meat (Callinectes sapidus) and compares the effect of high pressure treatments and the thermal cooking process on the yielding of crab meat. Differential scanning calorimetry analysis of raw crab meat showed two peaks at 48.18 and 76.76 °C corresponding to myosin and actin denaturation. The increasing in the pressure level resulted in a decrease in denaturation enthalpy of both proteins. Data from Fourier transform infrared spectroscopy indicated changes in the secondary protein structures in which a reduction in α-helix and an increase in β-turn were observed as a result of denaturation induced by HPP. Electrophoresis analysis (SDS-PAGE) showed myofibrillar protein denaturation as the pressure level increased. The HPP at 100 and 300 MPa resulted in a significant increase in the yielding of meat extracted when compared to the thermal treatment (90 °C/20 min). Higher sensory scores were obtained in 300 and 600 MPa suggesting higher acceptance. Results suggest the feasibility of applying HPP as an alternative to the thermal treatment to process crab meat.Industrial relevanceHigh pressure processing (HPP) technology has been successfully applied to several seafood products. However, it is important to study the effect of HPP on the food components, mainly proteins in the crab meat to optimize the processing parameters to get high-quality products. In the present study, the benefit of using HPP as an alternative to the commercial thermal processing for extraction of crab meat has been confirmed. Applying 600 MPa (10 °C/5 min) to the whole blue crab resulted in a higher yield of extracted crab meat compared with the other treatments. However, using a range of 100–300 MPa (10 °C/5 min) also increases the yielding of extracted crab meat when compared to the thermal process, and moreover, the extraction procedure is faster. The quality and the functional properties of the crab meat with fresh appearance is preserved after the treatment at 100 MPa. These results could promote subsequent applications of pressurized crab meat in the crab industry, especially with the HPP treatments in a range between 100 and 300 MPa.  相似文献   

2.
《Meat science》2011,87(4):1005-1009
The effect of high pressure processing (HPP) on the survival of verotoxigenic Escherichia coli (VTEC) in two types of Norwegian type dry-fermented sausages was studied. Two different types of recipes for each sausage type were produced. The sausage batter was inoculated with 6.8 log10 CFU/g of VTEC O103:H25. After fermentation, drying and maturation, slices of finished sausages were vacuum packed and subjected to two treatment regimes of HPP. One group was treated at 600 MPa for 10 min and another at three cycles of 600 MPa for 200 s per cycle. A generalized linear model split by recipe type showed that these two HPP treatments on standard recipe sausages reduced E. coli by 2.9 log10 CFU/g and 3.3 log10 CFU/g, respectively. In the recipe with higher levels of dextrose, sodium chloride and sodium nitrite E. coli reduction was 2.7 log10 CFU/g in both treatments. The data show that HPP has a potential to make the sausages safer and also that the effect depends somewhat on recipe.  相似文献   

3.
The spores of Clostridium perfringens can survive and grow in cooked/pasteurized meat, especially during the cooling of large portions. In this study, 600 MPa high pressure thermal processing (HPTP) at 75 °C for the inactivation of C. perfringens spores was compared with 75 °C thermal processing alone. The HPTP enhanced the inactivation of C. perfringens spores in beef slurry, resulting in 2.2 log reductions for HPTP vs. no reductions for thermal processing after 20 min. Then, the HPTP resistance of two C. perfringens spore strains in beef slurry at 600 MPa was compared and modeled, and the effect of temperature investigated. The NZRM 898 and NZRM 2621 exhibited similar resistance, and Weibull modeled well the log spore survivor curves. The spore inactivation increased when HPTP temperature was raised from 38 to 75 °C. The results confirm the advantage of high pressure technology to increase the thermal inactivation of C. perfringens spores in beef slurry.Industrial relevanceC. perfringens spores may cause food/meat poisoning as a result of improperly handled and prepared foods in industrial kitchens. Thermal processes at 100 °C or higher are generally carried out to ensure the elimination of these pathogenic spores. High pressure processing (HPP) is a food pasteurization technique which would help to maintain the sensorial and nutritional properties of food. Preservation of foods with HPP in conjunction with mild heat (HPTP) would enhance the spore inactivation compared to thermal processing alone at the same temperature, due to a known germination–inactivation mechanism. This technology, together with the application of Good Manufacturing Practices, including rapid cooling, is a good alternative to the traditional methods for producing safe processed meat and poultry products with enhanced sensory and nutritional quality.  相似文献   

4.
High pressure processing (HPP) reduces the glycolytic activity of lactic acid bacteria (LAB) and provides a means to control further production of acidic metabolites in fermented dairy products during storage. However, there is limited information on the effects of HPP on specific enzymes of dairy starter bacteria responsible for the metabolism of lactose. The aim of this study was to determine pressure-induced inactivation of glycolytic enzymes in Lactococcus lactis subsp. lactis C10, Streptococcus thermophilus TS1 and Lactobacillus acidophilus 2400. Cultures were grown for 16 h in M17 or MRS broth containing 5% (w/v) lactose at pH 6.5 (maintained by addition of 10 M NaOH). The cells were harvested by centrifugation, washed and resuspended in 100 mM phosphate buffer (pH 6.5) and pressure-treated at 300 and 600 MPa (≤ 22 °C, 5 min). The ability of pressure-treated resting cells of Lactococcus, incubated with 5% (w/v) lactose at 30 °C, to ferment lactose was evaluated by determining titratable acidity (TA) during incubation. The activities of phospho-β-galactosidase (P-β-gal), β-galactosidase (β-gal) and lactate dehydrogenase (LDH) were determined in cell-free extracts of untreated and pressure-treated cells. Resting cells of Lactococcus treated at 600 MPa had a substantially lower rate of acidification than the controls and those treated at 300 MPa. Both P-β-gal and β-gal were significantly inactivated (p < 0.01) in the starter cultures treated at 300 or 600 MPa. The LDH in Lactococcus and Lactobacillus was highly resistant to pressure treatment at 300 MPa. In contrast, the LDH in Streptococcus was almost completely inactivated at ≥ 300 MPa.Industrial relevanceContinuing production of acidic metabolites in fermented dairy products during storage can be a technological challenge that adversely affects product quality. The current study demonstrates that high pressure processing (HPP) offers the potential of controlling this problem by inactivation of glycolytic enzymes in various mesophilic and thermophilic starter cultures. The findings of this research will assist in establishing optimised operating parameters for HPP treatment of cultured products to extend shelf-life, by reducing acid production during storage.  相似文献   

5.
Microbial diversity and dynamic changes of sliced vacuum-packed cooked ham during refrigerated storage (0–90 days) after high pressure processing (400 MPa at 22 °C for 10 min) was investigated by using culture-dependent and culture-independent approaches. Isolation of genome DNA and total RNA directly from meat samples, followed by PCR–denaturing gradient gel electrophoresis (DGGE) and RT-PCR–DGGE on 16S rDNA V3 region, was performed to describe the structure of the bacterial community and active species in pressurized sliced cooked ham. The DGGE profile showed that most spoilage bacteria including Lactococcus garvieae, Weissella cibaria, Lactobacillus sakei, Lactobacillus curvatus, Weissella paramesenteroides, Leuconostoc carnosum and Lactococcus lactis subsp. lactis were completely inactivated after high pressure processing (HPP), whereas Weissella viridescens and Weissella minor survived HPP and induced the final spoilage. The microbial diversity of HPP samples during the whole refrigerated storage period was extremely simple. Our results clearly indicated that HPP was an efficient method for avoiding the growth of the major spoilage bacteria and could be used to prolong the shelf-life of sliced vacuum-packed cooked ham.  相似文献   

6.
Consumers demand fresh-cut fruits, free from additives and with fresh appearance. However, the alteration caused by the tissue processing limits their shelf life. The aim of this work was to optimize the pressure level (from 400 to 600 MPa) and the holding time (from 1 to 9 min) of the high pressure processing (HPP) to achieve enzyme inactivation while preserving texture and color of minimally processed peaches. Peach cylinders were processed by combining dipping in organic acid solution, with vacuum packaging and HPP at room temperature. Results showed that higher pressure levels were more effective to inactivate enzymes and to preserve color than longer times. In addition, long treatments affected the microstructure and the texture of the tissues more seriously. Finally, a desirability study and a principal component analysis were performed. These showed that the optimal treatment would be 585 MPa and 1 min and that the best treatment of the ones studied was 600 MPa for 5 min.Industrial RelevanceThere is an increasing demand for minimally processed fruits as a result of their convenience and fresh-like characteristics. Although consumers are familiar with the consumption of canned peaches, the nutritional profile of this product is far from being optimal, and therefore minimal processing offers the unique advantage of maintaining the original quality of the fresh fruit. However, this product is prone to suffer alterations such as browning and softening. High pressure processing (HPP) is proposed as a non-thermal technology able to suitably preserve minimally processed peaches. This study aimed to optimize the conditions of the HPP treatment, to achieve enzyme inactivation while maintaining texture and color. The promising results obtained can help promote the use of HPP as an alternative to preserve the quality and extend the shelf life of minimally processed fruits.  相似文献   

7.
The effects of high pressure homogenization (HPH, < 190 MPa) and high pressure processing (HPP, < 600 MPa) on hen egg white lysozyme muramidase and antimicrobial activities were assessed. The results showed enzyme activation under mild process conditions (< 120 MPa for HPH and < 400 MPa for HPP, both at 20 °C) and mostly for activity measured at non-optimum pH and temperature. When processes were carried out at 50 °C, lower activation were observed (< 18% for HPH and < 13% for HPP), possibly indicating that processes at 50 °C delivered enough energy to promote undesirable unfolding on lysozyme. HPH induced a greater increase in muramidase activity (29%) than HPP (17%), but this not reflected the antimicrobial performance of the processed lysozyme, since only HPP reduced the minimum inhibitory concentration of the lysozyme against Bacillus cereus (50%) and Geobacillus stearothermophilus (66%). The results highlighted that each process changed differently the lysozyme muramidase and antimicrobial activity.Industrial relevanceHPP and HPH are generally described as technologies able to increase the activity of several enzymes and are suggested as tools to improve the performance of commercial enzymes. The results showed that although HPP and HPH were able to increase the muramidase activity of lysozyme, improvement of the antibacterial performance was only observed for samples processed by HPP. Therefore HPP was highlighted as the better pressure process to physically modify lysozyme.  相似文献   

8.
Cubes of Granny Smith and Pink Lady apples were vacuum packed in barrier bags with 0% to 50% (v/v) pineapple juice (PJ) at 20°Bx and subjected to high pressure processing (HPP) at 600 MPa for 1–5 min (22 °C). The in-pack total colour change (ΔE) was observed over 4 weeks at 4 °C. Within <1 week of storage at 4 °C, texture, polyphenoloxidase, pectinmethylesterase activities, changes in ΔE and visual browning after opening the bags during air exposure (22 °C; 21% O2 ) for 5 h were also monitored. During the 4 weeks storage in bag visible colour changes were not observed. Texture and ΔE after 5 h air exposure were significantly affected by the apple variety, HPP time and % PJ used. The combined treatment significantly reduced residual PPO activity while PME activity was not affected in both varieties. Pineapple juice in combination with HPP could be used as a natural preservation system for minimally processed apples.Industrial relevanceBrowning upon opening the packs and during air exposure can adversely affect the quality of fresh-cut fruits. Combined treatment of high pressure processing (HPP) and use of pineapple juice has the potential to prevent browning for several hours giving sufficient time for presentation and use in domestic and foodservice environment where high quality fresh-like fruit is required.  相似文献   

9.
High pressure–low temperature (HPLT) processing was investigated to achieve Escherichia coli O157:H7 inactivation in non-intact, whole muscle beef while maintaining acceptable quality characteristics. Beef semitendinosus was internally inoculated with a four strain E. coli O157:H7 cocktail and frozen to − 35 °C, then subjected to 551 MPa for 4 min (HPLT). Compared to frozen, untreated control (F), HPLT reduced microbial population by 1.7 log colony forming units (CFU)/g on selective media and 1.4 log on non-selective media. High pressure without freezing (551 MPa/4 min/3 °C) increased pH and lightness while decreasing redness, cook yield, tenderness, and protein solubility. Aside from a 4% decrease in cook yield, HPLT, had no significant effects on quality parameters. It was demonstrated that HPLT treatment reduces internalized E. coli O157:H7 with minimal effect on quality factors, meaning it may have a potential role in reducing the risk associated with non-intact red meat.Industrial relevanceIn the current work, high pressure (551 MPa, 4 min) was applied to beef semitendinosus while it was at subfreezing temperatures (<− 30 °C). Most studies utilizing this high pressure–low temperature (HPLT) process employ subzero capable thermostatic high pressure equipment, which currently has no commercial equivalent. Successful HPLT runs were completed in this study using more conventional temperature control (1–3 °C) on pilot scale (20 L) high pressure processing equipment. The process yielded E. coli O157:H7 reductions of 1.4–1.7 log colony forming units (CFU)/g, which, while lower than conventional high pressure processing (HPP), may be sufficient to eliminate O157 populations typical of non-intact, whole muscle beef. Various quality factors, including color, purge losses and cooked tenderness, were unaffected by HPLT, while an equivalent HPP process at nonfreezing temperatures (551 MPa, 3 °C) induced color change (loss of redness), increased cook losses and decreased cooked tenderness compared to the control and HPLT beef. Producers of non-intact, whole muscle (blade tenderized or brine injected) meat, especially those that ship and sell frozen products, may look to HPLT processes to improve food safety.  相似文献   

10.
High pressure processing (HPP) is a non-thermal technology used to activate or inactivate enzymes. This study investigated the effects of HPP (600 MPa for 5 or 30 min at 25 °C) on cocoyam, Peruvian carrot and sweet potato color, and the polyphenoloxidase (PPO) and peroxidase (POD) activities in tuber cubes, puree, and enzyme extract subjected to HPP. The results showed enzyme inactivation by HPP in cocoyam (up to 55% PPO inactivation in puree and 81% POD inactivation in extract) and Peruvian carrot (up to 100% PPO and 57% POD inactivation the extract). In contrast, enzyme activation was observed in sweet potato (up to 368% PPO and 27% POD activation in puree). The color results were compatible to enzyme activity: the color parameters remained unchanged in cocoyam and Peruvian carrot, which showed high PPO and POD inactivation after HPP. Furthermore, the impact of HPP on the enzymes was influenced by the matrix in which HPP was carried out, evidencing that the enzyme structure can be protected in the presence of other food constituents.Industrial relevanceThe enzymes PPO and POD are an important concern for vegetable processing, due its ability to induce browning after vegetables are cut. The HPP at 600 MPa for 5 or 30 min can be used to inactivate these enzymes in cocoyam and Peruvian carrot, guaranteeing the color and freshness of the tubers similar to the fresh cut vegetable.  相似文献   

11.
This study was carried out to investigate the impact of high pressure processing (HPP) at different pressure (200, 400 and 600 MPa) and treatment times (5, 9 and 15 min) on ascorbic acid, total phenolics, anthocyanin stability and total antioxidant capacity, were also studied at different physicochemical parameters such as pH, °Brix and color. HPP treatments resulted in more than 92% vitamin C retention at all treatment intensities. On the other hand, total phenolic content in the juice was increased, mainly after HPP at 200 MPa for all treatment times. The total and monomeric anthocyanin were similar or higher than the value estimated for the fresh juice being maximum at 400 MPa/15 min (16% increase). Antioxidant capacity values were not statistically different for treatments at 200 MPa for 5–15 min in comparison with fresh juice, however for 400 MPa/15 min and 600 MPa for all times (8–16% reduction), the lowest values were observed for total antioxidant capacity determined with TEAC method. No significant changes were observed in pH and °Brix. Color changes (a*, b*, L* and ΔE) were not visually noticeable for pressurized beverage for all pressures and times.  相似文献   

12.
The food industry must develop effective methods to address the reduction of salt in meat products and contribute to the reduction of salt consumption associated with cardiovascular diseases. This paper investigated the effect of NaCl content (0, 0.95, 1.33 and 1.90%), phosphate content (0 and 0.25%) and the use of high pressure processing (HPP) (100, 300, 600 MPa) at different processing stages (raw material, after injection, tumbling and cooking) on the quality parameters (cooking loss, texture, water holding capacity, color and saltiness perception) in cooked ham. The application of HPP to the raw meat or after its injection was detrimental to the structure and water retention of the salt-reduced cooked ham. Whereas the application of HPP at 100 MPa after tumbling was beneficial. A further salt reduction up to 1.1% NaCl was possible by the salt replacement with KCl (0.2%) in combination with the HP treatment.Industrial relevanceHigh-pressure treatment can help in the production of salt-reduced meat products but efforts are needed to understand the feasible levels of NaCl, phosphates and specific HP treatments to apply in commercial scenarios. The present paper describes a strategy to produce a salt-reduced cooked ham (45% reduction) using a HP treatment at 100 MPa after tumbling stage in combination with KCl (0.2%).  相似文献   

13.
The present study was undertaken to assess the effect of high pressure processing (HPP) on total phenolic content (TPC) in manuka honey. Manuka honey is known for its amazing antimicrobial action and antioxidant properties. The effect of HPP (200, 400 and 600 MPa) at ambient and moderate temperatures (53.41 ± 0.30 °C, 65.29 ± 1.77 °C, 71.92 ± 1.63 °C) and their combination for different processing time (5, 10 and 15 min) was investigated. Conventional thermal processing (51.74 ± 0.03 °C, 61.90 ± 0.10 °C and 71.58 ± 0.04 °C) was also carried out as comparison to HPP. Operating HPP at 600 MPa (26.80 ± 0.95 °C–30.18 ± 2.14 °C) for 10 min was found to be the most effective process with 47.16% increment in TPC as compared to unprocessed honey, whereas no significant increase (p < 0.05) was observed in thermal processing as well as in combined HPP–thermal processing. Therefore, HPP at ambient temperatures could be an appropriate method to produce tastier and more nutritive manuka honey.Industrial relevanceThe preservation of total phenolic content (TPC) as a main phytochemical component in honey is very important with direct impact on nutritional value and antioxidant activity. A significant increase in the TPC was obtained by processing. Results demonstrated the HPP capability to increase TPC in manuka honey by 47%. From a nutritional perspective, this result is associated with the production of a higher antioxidant honey, known to prevent certain diseases such as cancer. The study generates a new approach in honey processing which can guarantee the high nutritional quality of honey and its original natural freshness.  相似文献   

14.
High pressure processing (HPP) was applied as a pre-treatment on Moringa oleifera (MO) kernels, for the first time, prior to aqueous enzymatic extraction (AEE) of the MO oil, and the effect of this pre-treatment is reported in terms of the free oil recovery and the nature of the cream emulsions formed. The HPP pre-treatments (50–250 MPa, 20–60 °C, 10–60 min) generally resulted in higher free oil recoveries and thinner emulsion layers from ground-sieved kernels than the whole kernels. Optimization of the HPP parameters indicated linear increment in free oil recovery with increase in temperature and time, but not the pressure level. Without the pre-boiling step in the AEE process, the use of HPP pre-treatment at 50 MPa and 60 °C for 35 min resulted in approximately 73% (w/w) free oil recovery with thinner emulsion layer than the use of AEE alone. These findings highlighted the ability of HPP in altering the MO protein structure into a form of less emulsifying functional properties, thus further de-emulsification method may not be necessary.Industrial relevanceHigh pressure processing (HPP) applications are increasing in the food industry. High pressure application allows the use of relatively lower temperatures in processes, in order to achieve comparable outcomes of higher temperature processing. This study explores the application of HPP on Moringa oleifera (MO) kernels prior to aqueous enzymatic extraction (AEE) of oil. In general, the main disadvantage of AEE is its lower oil recovery in comparison with solvent extraction, which is attributed to the formation of a relatively stable cream emulsion after extraction. This study shows that the thickness of the creamy emulsion can be significantly reduced, and oil recoveries improved, by subjecting the kernels to HPP prior to extraction. The improvement in recoveries did not depend strongly on the level of high pressure applied, but downstream processes for free oil separation and recovery were considerably simplified.  相似文献   

15.
Soybean (Glycine max (L.) MERR.) is recognized as a potent food allergen causing one of the most frequent food allergies worldwide. The effect of high pressure processing (HPP) prior to and during enzymatic hydrolysis using the enzyme preparation Flavourzyme® on the degree of hydrolysis (DH), molecular weight distribution (SDS-PAGE) and β-conglycinin (Gly m5) immunoreactivity of soy protein isolate (SPI) was studied. Enzymatic hydrolysis was carried out at atmospheric pressure (0.1 MPa) and HPP (100–600 MPa) at 50 °C for 15 min. Pressures higher than 300 MPa enhanced the degradation of Gly m5, which was confirmed by SDS-PAGE and LC-MS/MS analyses. The immunoreactivity of the samples was assessed by in vitro sandwich ELISA using mouse monoclonal anti-Gly m5 antibodies. Depending on the antibody tested, the residual immunoreactivity was completely inhibited or significantly impaired up to 99.5% applying HPP during hydrolysis at 400 and 500 MPa. By means of principal component analysis, the beany and green off-flavors characteristic for unprocessed SPI could be reduced by pressure enhanced hydrolysis at 400–500 MPa. The resulting hydrolysates possessed improved protein solubility, foaming activities and oil-binding capacities, which were improved by 45%, 66%, and 210%, respectively. HPP prior to and during enzymatic hydrolysis at 400–500 MPa constitutes an innovative approach for the production of low-allergen food ingredients that combine good taste and enhanced functional properties.Industrial relevanceFood allergy has emerged in the last years as the incidence and prevalence are rising dramatically. Up to now, enzymatic hydrolysis is the only feasible method to mitigate soy allergy. However, the major drawback associated with enzymatic hydrolysis is the incomplete destruction of allergenic epitopes and the formation of a strong bitter taste. This research activity demonstrates that high pressure assisted enzymatic hydrolysis using the enzyme preparation Flavourzyme effectively reduces the immunoreactivity of soy proteins. Degree of hydrolysis analysis, SDS-PAGE, mass spectrometry as well as sandwich ELISA with mouse monoclonal anti-Gly m5 antibodies have been applied to analyze the destruction of allergenic proteins as well as to determine the residual immunoreactivity. This study provides preliminary evidence that this innovative combination process of high pressure and enzymatic hydrolysis has great potential to produce tasty low-allergen soy-based food ingredients with good physicochemical properties, i.e. protein solubility and foamability.  相似文献   

16.
High pressure processing (HPP) and thermal pasteurization (TP) of fermented minced pepper (FMP) were comparatively evaluated by examining their impacts on microbial load, titratable acid (TA), pH, aw, firmness, color, capsanthin, ascorbic acid (AA), and biogenic amines (BAs) after processing and during 12 weeks of storage at 25 and 37 °C. The total plate count (TPC) in FMP samples was reduced by 1.48, 0.12 and 1.58 log10 CFU/g after TP (83 °C/15 min), HPP1 (500 MPa/20 °C/5 min) and HPP2 (500 MPa/50 °C/5 min), respectively. The population of spores was reduced by 1.21 log10 CFU/g only after HPP2. During storage at 25 or 37 °C, the TPC in TP, HPP1, and HPP2 samples increased by 0.88/1.21, 0.41/0.62 and 0.60/0.86 log10 CFU/g, respectively, while the spores decreased below the detection limit. The retention of firmness after TP, HPP1 and HPP2 was 36.91, 91.15 and 66.48% respectively, and HPP-treated samples exhibited more retention during the storage. Color of FMP samples was not changed by TP, but slightly changed by HPP1 and HPP2. The content of capsanthin retained 78.99, 93.71 and 88.19% after TP, HPP1 and HPP2, it showed a small decrease during storage. Levels of biogenic amines (BAs) in HPP2 samples were lower than that of TP and HPP1 ones. There were better sensory quality and lower microbial level in HPP-treated samples during storage, indicating that HPP is a better choice for the preservation of FMP.Industrial relevanceConsumption of fermented minced pepper (FMP), as a traditional Chinese food, is becoming increasingly popular. Considering that heat treatment may destroy some heat-sensitive quality of the products, this study evaluated the effects of high pressure processing (HPP) on quality of FMP. Findings of this study could help processors commercialize HPP to replace current thermal processing in industrial production.  相似文献   

17.
The flow behaviour of aqueous solutions of gelatin, and skim milk–gelatin mixtures treated by high-pressure processing (HPP) were investigated. HPP was carried out at 5 °C for 15 min, at 150 MPa, 300 MPa, 450 MPa and 600 MPa, and the gelatin concentrations were varied from 0 to 1 wt.%. Viscosity measurements showed that the HPP treatment did not affect the flow behaviour of gelatin alone, nor that of the skim milk–gelatin mixtures made with < 0.4 wt.% gelatin. However, at gelatin concentration > 0.4 wt.%, the mixtures treated with 300 and 450 MPa exhibited a peculiar flow behaviour, where at intermediate shear rates the viscosity was higher than that of the non-treated mixture or the mixtures treated at 150 MPa and 600 MPa. Particle size measurements showed that for gelled mixtures (> 0.4 wt.% gelatin) 300 MPa HPP treatment resulted in an increase in the particle size, while at all other pressure treatments (> 150 MPa), a shift in particle size distribution to lower sizes was observed. Confocal microscopy showed that these skim milk–gelatin mixtures were phase-separated with a gelatin continuous phase, this was confirmed by dynamic rheological measurements which showed that qualitatively the viscoelastic properties of the mixtures were the same. A mechanism of the effect of high-pressure treatment on the casein micelle in skim milk–gelatin mixtures is proposed.Industrial relevanceThis fundamental work, dealing with the effect of high pressure on the physicochemical properties skim milk–gelatin mixtures could be relevant to the industry in several ways. Firstly, skim milk–gelatin mixtures are widely used in the dairy industry, particularly in yoghurt manufacture, where gelatine is used as a stabiliser. In addition the application of High Hydrostatic Pressure to such a system is also relevant, as this technology could be used as a substitute to the conventional heat treatment processes. Secondly, an important finding of this study is that under certain conditions of high pressure and gelatine concentration, an increase in viscosity is observed at intermediate shear-rate (between 10 and 100 s?1). This is highly relevant to Industry if the system requires subsequent pumping. Thirdly, from a sensory view point, this range of shear rates (10 and 100 s?1) is comparable to that experienced by a food bolus during swallowing. Thus, this effect of high pressure on the viscosity can influence sensory attribute of the skim milk–gelatin food system.  相似文献   

18.
The present study was undertaken to assess the effect of high pressure treatments and conventional thermal processing on antioxidant activity, levels of key antioxidant groups (polyphenols, ascorbic acid and anthocyanins) and the colour of strawberry and blackberry purées. Bioactive compounds (cyanidin-3-glycoside, pelargonidin-3-glucoside, ascorbic acid) and antioxidant activity were measured in strawberry and blackberry purées subjected to high pressure treatment (400, 500, 600 MPa/15 min/10–30 °C) and thermal treatments (70 °C/2 min). Samples were assessed immediately after processing. Different pressure treatments did not cause any significant change in ascorbic acid (p > 0.05). In contrast, following thermal processing (P70  2 min) ascorbic acid degradation was 21% (p < 0.05) as compared to unprocessed purée. However, no significant changes in anthocyanins were observed between pressure treated and unprocessed purées (p > 0.05), whereas conventional thermal treatments significantly reduced the levels (p < 0.05). In general, antioxidant activities of pressure treated strawberry and blackberry purées were significantly higher (p < 0.05) than in thermally processed samples. Colour changes were minor (ΔE) for pressurised purées but the differences were slightly higher for thermally treated samples. Redness of purées was well retained in high pressure treated samples. Therefore processing strawberry and blackberry by high pressure processing could be an efficient method to preserve these products quality. Hence high pressure processing (HPP) at moderate temperatures may be appropriate to produce nutritious and fresh like purées.Industrial relevanceThis research paper provides scientific evidence of the potential benefits of high pressure processing in comparison to thermal treatments in retaining important bioactive compounds. Antioxidant activity (ARP), ascorbic acid, and anthocyanins after exposure to high pressure treatments (400–600 MPa) were well retained. Our results also show that redness and colour intensity of strawberry and blackberry purées were better preserved by high pressure processing than conventional thermal treatment. From a nutritional perspective, high pressure processing is an attractive food preservation technology and offers opportunities for horticultural and food processing industries to meet the growing demand from consumers for healthier food products. Therefore high pressure processed foods could be sold at a premium than their thermally processed counterparts as they will have retained their fresh-like properties.  相似文献   

19.
High pressure processing (HPP) is a technology able to reduce microorganisms and to modify food functional properties. This study aims to investigate the effect of three pressure variables (pressure levels of 100–400 MPa, pressure holding time of 0–30 min, and pressurization rate of 8 and 14 MPa s 1) in microbiological and physical analyses, and in myofibrillar proteins profiles in sea bass fillets.Pressurization rate induced changes in all parameters evaluated, although in a lesser extent than other variables. In general, the characteristics of fillets treated at 100 MPa were not different from non-treated samples. The magnitude of changes increased with pressure level (250–400 MPa) and holding time (0–30 min). In general, with the increase of pressure level and holding time, fillets become whitish, microbiological load and water holding capacity decreased, pH increased, and myofibrillar proteins with molecular weights below 30 kDa increased, whereas those with lower isolectric point values decreased.HPP can be a potential tool to process fillets due to the improvement in microbiological safety (about 2 log CFU g 1 reduction in the treatment at 400 MPa–30 min), which might result in an extended shelf life.Industrial relevanceHigh pressure processing is an interesting technology for food preservation due to its ability to reduce microorganisms and to modify food functional properties. This study brought new evidences about the effect of high pressure processing on sea bass fillets, namely in myofibrillar protein profiles (SDS-PAGE and IEF electrophoreses). Variables such as pressure holding time and pressurization rate, besides pressure level, are also important in the choice of high pressure processing conditions. The results also suggest that high pressure processing might delay the degradation of fish muscle. The advantages of products treated with high pressure processing can lead to new opportunities in the market, being important for the food industry.  相似文献   

20.
High pressure processing (HPP) is a promising food preservation technology as an alternative to thermal processing for microbial inactivation. The technological parameters, the type of microorganism, and the food composition can greatly affect the microbicidal potential of HPP against spoilage and pathogenic microorganisms. Presently, the number of available models quantifying the influence of food characteristics on the pathogen inactivation is scarce. The aim of this study was to model the inactivation of Listeria monocytogenes CTC1034 in dry-cured ham, as a function of pressure (347–852 MPa, 5 min/15 °C), water activity (aw, 0.86–0.96) and fat content (10–50%) according to a Central Composite Design. The response surface methodology, based on the equation obtained with a stepwise multivariate linear regression, was used to describe the relationship between bacterial inactivation and the studied variables. According to the best fitting polynomial equation, besides pressure intensity, both aw and fat content exerted a significant influence on HP-inactivation of L. monocytogenes. A clear linear piezoprotection trend was found lowering the aw of the substrate within the whole range of tested pressure. Fat content was included in the model through the quadratic term and as interaction term with pressure, resulting in a particular behavior. A protective effect due to the presence of high fat content was identified for pressure treatments above ca. 700 MPa. At lower pressure, higher inactivation of L. monocytogenes occurred by increasing the fat content above 30%. The results emphasize the relevant influence of intrinsic factors on the L. monocytogenes inactivation by HPP, making necessary to assess and validate the effectiveness of HPP on specific food products and consequently set process criteria adjusted to each particular food product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号