首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kernels of 10 different mango varieties were extracted. The physico-chemical characteristics and lipid class composition of fats were studied. The fat content of mango kernels grown under the soil and climatic conditions of Bangladesh varied from 7.1% to 10%, depending on the variety. The total lipid extracts were fractionated into lipid classes by a combination of column and thin layer chromatography (TLC). The hydrocarbon and sterol esters varied from 0.3% to 0.7%, triglycerides from 55.6% to 91.5%, partial glycerides from 2.3% to 4% and free sterol from 0.3% to 0.6%. Free fatty acids amounted to 3.0–37% as oleic; glycolipids were 0.6–1.2% and phospholipids 0.11–0.8%. The fatty acid composition of triglyceride (TG) fractions was analyzed by gas liquid chromatography (GLC). Palmitic acid varied from 7.9 molar % to 10.0 molar %, stearic from 38.2% to 40.2%, oleic from 41.1% to 43.8%, linoleic from 6.0% to 7.6%, linolenic from 0.6% to 1.0% and arachidic acid from 1.7% to 2.6%. TLC revealed the presence of lyso-phosphatidylcholine, phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine and phosphatidic acid in the phospholipid fraction.  相似文献   

2.
Lipids from five cultivars of highbush blueberries (Vaccinium corymbosum L.) were extracted and fractionated into neutral lipids (60–66%), glycolipids (20–22%) and phospholipids (14–18%). The major fatty acids in all fractions were palmitic (16∶0), oleic (18∶1), linoleic (18∶2), and linolenic (18∶3) acids. All lipid classes had a large concentration of C18 polyunsaturated acids (84–92%), indicating that blueberries are a rich source of linoleic and linolenic acids. Changes in the fatty acid composition of neutral lipids and phospholipids were not significantly different among the five cultivars, but significant differences were noted in the ratios of linoleic and linolenic acids in the glycolipids fraction.  相似文献   

3.
TheMoringa peregrina kernel contains 1.8% moisture, 54.3% oil, 22.1% protein, 3.6% fiber, 15.3% carbohydrate and 2.5% ash. The composition and characteristics of the extracted oil were determined. Gas liquid chromatography of methyl esters of the fatty acids shows the presence of 14.7% saturated fatty acids and 84.7% unsaturated fatty acids. The fatty acid composition is as follows: palmitic 9.3%, palmitoleic 2.4%, stearic 3.5%, oleic 78.0%, linoleic 0.6%, linolenic 1.6%, arachidic 1.8% and behenic 2.6%.  相似文献   

4.
The seed oils from twenty-five Conifer species (from four families—Pinaceae, Cupressaceae, Taxodiaceae, and Taxaceae) have been analyzed, and their fatty acid compositions were established by capillary gas-liquid chromatography on two columns with different polarities. The oil content of the seeds varied from less than 1% up to 50%. Conifer seed oils were characterized by the presence of several Δ5-unsaturated polymethylene-interrupted polyunsaturated fatty acids (Δ5-acids) with either 18 (cis-5,cis-9, 18∶2,cis-5,cis-9,cis-12 18∶3, andcis-5,cis-9,cis-12,cis-15 18∶4 acids) or 20 carbon atoms (cis-5,cis-11 20∶2,cis-5,cis-11,cis-14, 20∶3, andcis-5,cis-11,cis-14,cis-17 20∶4 acids). Pinaceae seed oils contained 17–31% of Δ5-acids, mainly with 18 carbon atoms. The 20-carbon acids present were structurally derived from 20∶1n-9 and 20∶2n-6 acids. Pinaceae seed oils were practically devoid of 18∶3n-3 acid and did not contain either Δ5-18∶4 or Δ5-20∶4 acids. Several Pinaceae seeds had a Δ5-acid content higher than 50 mg/g of seed. The only Taxaceae seed oil studied (Taxus baccata) had a fatty acid composition related to those of Pinaceae seed oils. Cupressaceae seed oils differed from Pinaceae seed oils by the absence of Δ5-acids with 18 carbon atoms and high concentrations in 18∶3n-3 acid and in Δ5-acids with 20 carbon atoms (Δ5-20∶3 and Δ5-20∶4 acids). Δ5-18∶4 Acid was present in minute amounts. The highest level of Δ5-20∶4 acid was found inJuniperus communis seed oil, but the best source of Δ5-acids among Cupressaceae wasThuja occidentalis. Taxodiaceae seed oils had more heterogeneous fatty acid compositions, but the distribution of Δ5-acids resembled that found in Cupressaceae seed oils. Except forSciadopytis verticillata, other Taxodiaceae species are not interesting sources of Δ5-acids. The distribution profile of Δ5-acids among different Conifer families appeared to be linked to the occurrence of 18∶3n-3 acid in the seed oils.  相似文献   

5.
6.
TAGs play an important role in determining the functional properties of fat‐based food products such as margarines, chocolate, and spreads. Nowadays, special attention is given to the role of the TAG structure and how it affects functional properties such as mouth feel, texture, and plasticity. Key to this research is the need to develop more healthy fats with a reduced level of trans and saturated fatty acids (SFAs), while maintaining the desired properties. In this study, fat blends with identical levels of SFA (50%) but differing in the ratio asymmetric/symmetric blends were evaluated by pulsed NMR and texturometry as a function of storage time and storage temperature. A higher trisaturated TAG content gave rise to a higher solid fat content (SFC) at higher temperature and a lower SFC at lower temperature for both palmitic and stearic based blends. On the other hand, the effect of symmetry on the SFC‐profile of the blends was only clear for the stearic based blends. At lower temperatures, the SFC of symmetric TAG based blend (blend SM) was markedly lower than that of asymmetric TAG based blend (blend iS). However, from 30°C onwards, the SFC of blend SM was clearly higher than that of blend iS. The microscopic analyses revealed a denser crystal network for a higher degree of trisaturated TAG and for symmetric stearic based blends. Moreover, some blends showed a clear evolution of the microstructure during storage with smaller crystals transforming into larger ones. Finally, texture analyses demonstrated the importance of the crystallization and storage temperature on the hardness of the blends.  相似文献   

7.
The effects of plastid mutations on seed oil content and fatty acid composition are of considerable interest. Seeds of a number of plastome mutants produced by thepm plastome mutator line ofOenothera hookeri were therefore harvested to investigate these effects. The mutants were altered solely in their plastome: each seed lot had the same nuclear background. To facilitate the study, a rapid single-step method was developed to simultaneously assay both oil content and fatty acid composition of small quantities ofOenothera seed. The lipid analyses showed that the mutated plastome often changed the oil content of the seeds, and that such changes always reduced oil content. Strong negative correlations were observed between oil content and palmitate or γ-linolenate, and a strong positive correlation was observed between oil content and linoleate. This is the first instance to our knowledge in which plastid mutations have been unequivocally demonstrated to affect seed oil content and composition. Such effects would be indirect, since the mutated plastid genes would not be the structural genes for enzymes on the pathway of oil biosynthesis. The plastid mutations demonstrate another layer of potential complexity in understanding oilseed genetics.  相似文献   

8.
A method is described for rapid, reproducible extraction of total lipids from adipose and muscle tissues. The distribution of polyunsaturated fatty acids in the depot fats and intramuscular lipids in loin or rib roasts of pork, beef, lamb, and veal has been determined. The phosphatides of the muscle were found to contain a greater amount of polyunsaturated fatty acids than the neutral fats of the intramuscular lipids. American Meat Institute Foundation Journal Paper No. 225.  相似文献   

9.
Twenty sunflower(Helianthus annuus L.) introductions and the variety Mammoth Kussian were grown at Experiment, Georgia. Total oil, fatty acid composition, and other agronomic characteristics were used to evaluate the various introductions. Total oil content varied from 17.7 to 32.7%. All introductions were relatively low in palmitic, stearic, linolenic, and behenic acids. About 90% of the oil was composed of oleic and linoleic acids, and there was considerable variation in the ratios of these two fatty acids. Seed yields varied from 329 to 3,224 lb per acre and were related to the number and size of flowers. The more profusely flowering and higher yielding introductions originated in countries of lower latitudes.  相似文献   

10.
The oil and protein content are reported for the seeds of 19 plant species selected for their possible crop potential for the Canadian prairie region. Data on seed oil composition are reported for the 12 species which contained greater than 15% seed oil.  相似文献   

11.
A methodological study was conducted to test the potential of near-infrared reflectance spectroscopy (NIRS) to estimate the oil content and fatty acid composition of sunflower seeds. A set of 387 intact-seed samples, each from a single plant, were scanned by NIRS, and 120 of them were selected and further scanned as husked seed, meal, and oil. All samples were analyzed for oil content (nuclear magnetic resonance) and fatty acid composition (gas chromatography), and calibration equations for oil content and individual fatty acids (C16:0, C16:1, C18:0, C18:1, and C18:2) were developed for intact seed, husked seed, meal, and oil. For intact seed, the performance of the calibration equations was evaluated through both cross- and external validation, while cross-validation was used in the rest. The results showed that NIRS is a reliable and accurate technique to estimate these traits in sunflower oil (validation r 2 ranged from 0.97 to 0.99), meal (r 2 from 0.92 to 0.98), and husked seeds (r 2 from 0.90 to 0.97). According to these results, there is no need to grind the seeds to scan the meal; similarly accurate results are obtained by analyzing husked seeds. The analysis of intact seeds was less accurate (r 2 from 0.76 to 0.85), although it is reliable enough to use for pre-screening purposes to identify variants with significantly different fatty acid compositions from standard phenotypes. Screening of intact sunflower seeds by NIRS represents a rapid, simple, and cost-effective alternative that may be of great utility for users who need to analyze a large number of samples.  相似文献   

12.
13.
Blends of high-oleic sunflower oil and fully hydrogenated canola oil were subjected to enzymatic and chemical interesterification using Candida antarctica lipase (5%) and sodium methoxide (0.3%), respectively. The effect of each interesterification process was determined by comparing the triacylglycerol (TAG) composition, solid fat content (SFC) profiles and thermal properties of the blends before and after interesterification. Interesterification resulted in a decrease in the concentration of triunsaturated and trisaturated TAG and an increase in the proportion of mono- and disaturated TAG. These alterations in TAG composition and the presence of a greater variety of TAG species upon interesterification was correlated with a broader melting transition by differential scanning calorimetry and, ultimately, a lower melting point for the interesterified blends. Much broader ranges in plasticity were observed for the interesterified blends (chemically and enzymatically) compared to the physical blends. Even though ideal solubility of stearin in oil was observed, the value predicted by the Hildebrand model was higher than the actual amount. Crystallization kinetic parameters (Avrami index and rate constant) were similar for the non-interesterified, enzymatically interesterified and chemically interesterified blends when compared as a function of SFC. Results from this work will aid in the formulation of more healthy fat and oil products and address a critical industrial demand in terms of formulation options for spreads, margarines and shortenings.  相似文献   

14.
The concentration of lead, copper, cadmium and zinc as determined by anodic stripping voltammetry and atomic absorption spectrophotometry in a series of rapeseed oils, meals, and seeds is reported. The metal content of rapeseed seeds is not influenced by growing area; however, the variety appears to affect the metal levels. In general, meals contain twice the heavy metal burden of the seeds. The partitioning of metals between meals and oils heavily favors the meals except for lead where the distribution is approximately two to one.  相似文献   

15.
Accelerated aging effects, induced by y irradiation, were investigated on the fatty acid composition of lipids and on the content of endogenous antioxidants of four Indica and four Japonica rice seeds with and without intact hull. While the linoleic acid content of the phospholipids decreased gradually with the increase in irradiation doses, there was a corresponding increase in the linoleic acid content of the free fatty acids. Such changes were drastic, especially in the case of Japonica rice seeds irradiated without intact hull. However, the neutral lipids were found to be resistant to γ irradiation. The α-tocopherol content was found to decrease (markedly) in rice seeds irradiated with or without hull, especially in the Japonica rice seeds. At a dose of 15 kGy only traces of a-tocopherol could be detected in Japonica and Indica rice seeds irradiated with and without intact hull. Oryzanol, a relatively weaker anti-oxidant, was found to be more resistant to oxidative damage than a-tocopherol. At 15 kGy, the oryzanol content ranged from 59 μg to 170 μg/g lipid in rice seeds irradiated with intact hull, while the corresponding value for rice seeds irradiated without hull was 52 μg to 153 μg/g lipid. The overall susceptibility to oxidative damage was less in Indica rice seeds, indicating that the antioxidative defense system offered better protection in overcoming oxidative stress in Indica rice hull than in Japonica rice hull.  相似文献   

16.
The separation and identification of the components in milk fat, which are mainly triglycerides, is a challenge due to its complex composition. A reverse-phase high-performance liquid chromatography (HPLC) method with gradient elution and light-scattering detection is described in this paper for the triglyceride analysis in ewes’ milk fat. Triglyceride identification was carried out by combining HPLC, gas-liquid chromatography (GLC), and the calculated equivalent carbon numbers of several triglyceride standards. Quantitation of partially resolved peaks in the HPLC chromatogram was accomplished by applying a peak deconvolution program. Forty-four fatty acids were identified by GLC analysis, but only 19 were used for the following prediction of triglyceride molecular species; 181 triglycerides were identified, some of which were grouped at the same peak and needed application of the deconvolution program. Consequently, coefficients of variation were close to or lower than 5%. Moreover, the triglyceride composition of ewe, cow, and goat milk fat were compared by using these methods. These results show that ewe milk fat is richer in short- and medium-chain triglycerides, and cow milk fat is richer in long-chain and unsaturated triglycerides.  相似文献   

17.
The phospholipid composition of human and guinea pig skeletal muscle was determined. Virtually no autolytic changes occurred in the first half hour post-mortem and after 12 hr only very small changes were detected. There were significant differences in the phospholipid composition of red and white muscle, especially in the diphosphatidyl glycerol (DPG) content,red muscle having over 50% more DPG than white muscle.  相似文献   

18.
Populations of large and small milk fat globules were isolated and analyzed to determine differences in fatty acid composition. Globule samples were obtained by centrifugation from milks of a herd and of individual animals produced under both pasture and barn feeding. Triacylglycerols of total globule lipids were prepared by thin layer chromatography and analyzed for fatty acid composition by gas chromatography. Using content of the acids in large globules as 100%, small globules contained fewer short-chain acids, −5.9%, less stearic acid, −22.7%, and more oleic acids, +4.6%, mean values for five trials. These differences are consistent with alternative use of short-chain acids or oleic acid converted from stearic acid to maintain liquidity at body temperature of milk fat globules and their precursors, intracellular lipid droplets. Stearyl-CoA desaturase (EC 1.14.99.5), which maintains fluidity of cellular endoplasmic reticulum membrane, is suggested to play a key role in regulating globule fat liquidity. Possible origins of differences between individual globules in fatty acid composition of their triacylglycerols are discussed.  相似文献   

19.
Several plants of Acacieae (family Leguminosae) have been recommended under aforestation programs. The seeds of some such plants have been examined for their fatty acid composition with special reference to epoxy acids. Epoxy 18:1 in Acacia auriculiformis, A. catechu, A. coriacea and A. mellifera was 4.9, 0.1, 2.1, and 0.6%,respectively.  相似文献   

20.
A revolution has taken place in the analysis of fats. Physical methods, both rapid and accurate, have replaced laborious chemical procedures. The timehonored saponification equivalents and iodine values now are calculated from Chromatographic and nuclear magnetic resonance spectroscopic data. Differential migration processes such as countercurrent distribution, liquid-liquid chromatography, and gas chromatography have supplanted the classical distillation and crystallization procedures for analysis and preparation. What have been referred to as “gadgets” are now the stock-in-trade of the analytical lipid chemist. Mass, infrared, ultraviolet, and nuclear magnetic resonance spectrometers are the accepted tools for organic characterization. Recording detectors and computer processing of data reduce the labor of analysis and improve its quantitation. Today’s methodology stands at the verge of specifying fatty acid composition of even so complex lipids as hydrogenated fats in terms of the amounts, the positions, and geometric configurations of its individual component fatty acids. Presented at the AOCS Short Course, East Lansing, Mich., Aug. 29-Sept. 1, 1966. No. Utiliz. Bes. Dev. Div., ARS, USDA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号