首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of Alloy 690 TT samples either manually ground to 400 and 1500 grit, mechanically polished, or electropolished was performed in a solution of 1500 10 6B and 2.3 10 6Li with 2.5 10 6dissolved H2, at 325℃ and 15.6 MPa for 60 days. The oxide films grown on samples with different surface states were analyzed using various techniques. Results show that a triple-layered structure was formed after immersion: an outermost layer with large scattered oxide particles rich in Fe and Ni, an intermediate layer with small compact oxide particles rich in Cr and Fe for the ground surfaces and loose needle-like oxides rich in Ni for the polished surfaces, and an inner layer with continuous Cr-rich oxides. The surface state was found to affect not only the surface morphology, but also the corrosion rate. Grinding accelerated the growth of protective oxide films such that the ground samples showed a lower oxidation rate than the polished ones.Samples of ground Alloy 690 TT showed superior resistance to intergranular attack(IGA).  相似文献   

2.
Polypropylene (PP) was treated by an oxygen capacitively coupled radio frequency plasma (CCP) under a radio frequency (RF) power of 200 W for exposure time of 1, 5, and 10 rain. The ageing process of the plasma- treated PP was studied at an ageing temperature of 90 ~C during an ageing time up to 25 h. The formation of the nanotextures with different geometry and aspect ratio and the grafting of large number of oxygen- containing groups were achieved on as-treated PP surfaces under the oxygen CCP treatment for the increased exposure time. The hydrophilicity on the as-treated PP surfaces with the stable nanotextures was rapidly depressed during the ageing process at 90 ℃ due to the restructuring of chemical composition. The surface restructuring rate was dependent on the aspect ratio and the oxygen-containing groups on the nanotextured PP with increasing exposure time. The hydrophobic over-recovery to high hydrophobicity and superhydrophobicity were observed on the post-aged surfaces with the stable nanofibrils from as-treated hydrophilic surfaces. The superhydrophobicity with the low water adhesion was achieved on the post-aged surfaces preserving the nanofibrils with high aspect ratio and large distance due to the decrease of the oxygen-containing groups after the surface restructuring.  相似文献   

3.
Sol—gel coatings offer a number of advantages over other methods of protection for metallic materials.In the present work,3-mercaptopropyltrimethoxysilane(MPTS) was used as the precursor for sol—gel coating on aluminium metal.The gelation of MPTS sol—gel was characterized by Fourier transform infrared spectroscopy(FT-IR) studies.The formed film was found to be stable up to 350 ℃ as evident from thermogravimetric analysis.X-ray diffraction study and scanning electron microscopy supported the formation of MPTS coating on aluminium surface while the characterization of the coating was done by FT-IR studies.The corrosion inhibition potential of the sol—gel coatings on metal in 3.5%(w/v) of NaCI solution was assessed as a function of different concentrations of MPTS using electrochemical polarization and impedance measurements.The corrosion inhibition efficiency was found to increase with increasing MPTS concentration.The results of the study unravel the use of MPTS as a precursor in the formation of sol—gel coating over aluminium surface so as to protect the metallic surface from corrosion in neutral environment.  相似文献   

4.
A SiO_2-TiO_2 template with ordered tubular mesochannels has been prepared by the sol—gel method.Au nanorods are deposited in the tubular mesochannels of the SiO_2—TiO_2 template,and the shape of Au is changed from nanorods to nanospheres by ultraviolet irradiation during thermal deposition.The photocatalytic activity of mesoporous SiO_2—TiO_2 with/without Au nanorods/nanospheres is evaluated.Deposition of Au in the mesoporous SiO_2—TiO_2 template enhances the photocatalysis of TiO_2.Interestingly,the sample containing Au nanorods exhibits higher photocatalytic activity than that with Au nanospheres.Photocatalysis by exciting surface plasmon resonance is not detected in the composite samples regardless of the shape of the deposited Au nanoparticles.  相似文献   

5.
Surface films that formed on molten AZ91D magnesium alloy in SO_2/air cover gases at 680 ℃ in a sealed furnace were characterized by scanning electron microscopy,energy dispersive spectroscopy,X-ray diffraction and Auger electron spectroscopy.It is revealed that the film formed on molten AZ91 D alloy surface in cover gas with high air content can prevent the molten AZ91 D alloy from oxidation and ignition.The surface film contained three elements,namely magnesium,oxygen and sulfur,and was mainly composed of MgO and MgS.The properties of the film depended on air content in the cover gas and holding time.Thermodynamic calculation showed that MgSO_4 was the stable phase,and it was concluded that the formation of MgSO_4was important for the formation of the protective surface film in SO_2/air atmospheres.  相似文献   

6.
Surface morphology and its relationship with microstructure in Ta/NiFe/IrMn/CoFe/Ta multilayer system deposited by pulsed DC magnetron sputtering have been investigated in dependence of Ta buffer and NiFe seed layer thicknesses using atomic force microscopy.The structural parameters such as grain size,dislocation density,texture and strain were calculated.For each surface,a self-affinity behavior with mean fractal dimensions in the range of 2.03-2.18 was found.Additionally,it was also observed that the surface of all samples has locally smooth textured surface structure in the short range.The texture aspect parameter and texture direction index have been obtained for isotropy/anisotropy surface texture.A significant relationship between the surface texture and the strength of the〈111〉texture in IrMn layer has been found.The analysis indicated that the surface roughness is strongly affected by the thicknesses of the NiFe seed and Ta buffer layers.  相似文献   

7.
As a leading surface modification approach,hydrosilylation enables freestanding silicon nanocrystals(Si NCs) to be well dispersed in a desired medium.Although hydrosilylation-induced organic layers at the NC surface may somehow retard the oxidation of Si NCs,oxidation eventually occurs to Si NCs after relatively long time exposure to air.We now investigated the oxidation of hydrosilylated Si NCs in the frame work of density functional theory(DFT).Three oxygen configurations that may be introduced by the oxidation of a Si NC are considered.It is found that a hydrosilylated Si NC is less prone to oxidation than a fully H-passivated Si NC in the point of view of thermodynamics.At the ground state,backbond oxygen(BBO) and hydroxyl(OH) hardly change the gap between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of a hydrosilylated Si NC.At the excited state,the decrease in the HOMO-LUMO gap induced by the introduction of doubly bonded oxygen(DBO) is more significant than that induced by the introduction of BBO or OH.We have correlated the changes in the optical absorption(emission) of a hydrosilylated Si NC after oxidation to those of the HOMO—LUMO gap at the ground state(excited state).  相似文献   

8.
Reduced graphene oxide-Fe3O4(rGO—Fe3O4) composite has been prepared via a facile and effective hydrothermal method by synthesizing Fe3O4 nanospheres on the planes of reduced graphene oxide(rGO).Characterizations suggest the successful attachment of Fe3O4 nanospheres to rGO sheets.The rGO—Fe3O4composite(66.7 wt%of Fe3O4 in the composite) exhibits a stable capacity of 668 mAh g-1 without noticeable fading for up to 200 cycles in the voltage range of 0.001—3.0 V,and the superior performance of rGO-Fe3O4 is clearly established by comparison of the results with those from bare Fe3O4 nanospheres(capacity declined to 117 mAh g-1 only at the 200 th cycle).The excellent electrochemical performance of rGO—Fe3O4 composite can be attributed to the fact that the uniform dispersion of the Fe3O4 nanospheres growing on the rGO sheets avoids aggregation during Li uptake-release cycling,which is desired for cycle stability.Meanwhile,the rGO sheets afford not only elastic buffer to alleviate the volume variations of Fe3O4nanospheres,but also good ionic and electronic transport medium in the electrode.  相似文献   

9.
A new three-component and magnetically responsive NiFe2O4@PANI@Ag nanocomposite has been fabricated by coating of nickel ferrite, NiFe2O4, nanoparticles with polyaniline (PANI) and subsequent immobilization of silver nanoparticles onto the surface of polyaniline shell. The as-prepared nanocomposite has been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The saturation magnetization of the NiFe2O4 core decreases dramatically after coating with polyaniline and silver nanoparticles, however, the nanocomposite NiFe2O4@PANI@Ag can be still separated from solution media through magnetic decantation. The antibacterial activity of the synthesized nanocomposite was studied and compared with those of naked NiFe2O4, NiFe2O4@PANI and some standard antibacterial drugs.  相似文献   

10.
In the present work,the dissimilar joining of a Ti_3AI-based alloy to a Ni-based superalloy was attempted by gas tungsten arc(GTA) welding technology.Sound joints were successfully achieved by using a Cu—Ni alloy as filler material.According to X-ray energy dispersive spectroscopy and X-ray diffraction analysis results three transitional layers at the weld/Ti_3AI interface were verified as follows:Ti_2AINb phase dissolved with Cu and Ni;AI(Cu,Ni)_2Ti,(Cu,Ni)_2Ti and(Nb,Ti) solid solution;Cu-rich phase and a complex multi-element phase.The In718/weld interface is characterized by solid solutions of Ni,Cu,Cr,Fe and Nb.The average tensile strength of the as-welded joints at room temperature is 1 63 MPa,and after a post—weld heat treatment it is increased slightly to 177 MPa.The fracture occurred at the surfacial layer of the joined Ti_3AI base alloy,indicating that the Ti_2AINb layer dissolved with Cu and Ni is the weak link of the Ti_3AI/ln71 8 joint.  相似文献   

11.
Ce-incorporated apatite(Ce-HA) nano-scale particles with different Ce percentage contents(atomic ratio of Ce to Ce + Ca is 5%,10%and 20%,respectively) were synthesized via a simple wet chemical method in this study.The crystal structure,chemical groups,thermal stability,crystal morphologies and crystal sizes of the Ce-HA nano-particles were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and transmission electron microscopy(TEM).The influences of reaction temperature,reaction time,pH value,and the atomic ratio of Ce to Ce + Ca on the structure and performance of Ce-HA particles were studied.The results show that the lattice constants,particle sizes,crystallinity and thermal stability of Ce-HA vary with the doped Ce contents.With the increase of Ce content,the lattice constants of the Ce-HA nano-particles remarkably increase but the particle size,crystallinity and thermal stability gradually decrease.The reaction temperature as well as the reaction time has no significant effect on the properties of the final products,while the pH value has a direct relationship with their final chemical composition.The obtained Ce-HA nanosize particles possess potential application in preparing artificial bone implants,bone tissue engineering scaffold and other bioactive coatings.  相似文献   

12.
A route combining powder metallurgy and subsequent friction stir processing was utilized to fabricate carbon nanotube(CNT) reinforced Al(CNT/AI) and 6061 Al(CNT/6061AI) composites.Microstructural observations indicated that CNTs were uniformly dispersed in the matrix in both CNT/AI and CNT/6061 AI composites.Mg and Si elements tended to segregate at CNT—Al interfaces in the CNT/6061 AI composite during artificial aging treatment.The tensile properties of both the Al and 6061 Al were increased by CNT incorporation.The electrical conductivity of CNT/AI was decreased by CNT addition,while CNT/6061 AI exhibited an increase in electrical conductivity due to the Mg and Si segregation.  相似文献   

13.
Three types of photocatalysts were synthesized by metal organic chemical vapor deposition and impregnation methods using the almond shell activated carbon as support. These photocatalysts denoted by (TiO2/ASAC (V), TiO2/ASAC (11) and TiO2/ASAC (12)) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and nitrogen adsorption-desorption isotherms. SEM observation shows that TiO2 was deposited on activated carbon surface. XRD results confirm that TiO2 existed in a mixture of anatase and rutile phases. The DRS spectra show the characteristic absorption edge of TiO2 at approximate 380 nm corresponding to the optical band gap of 3.26 eV. Besides, FTIR spectrum indicated the presence of (Ti-O) groups. The specific surface area of photocatalysts decreased drastically in comparison with the original activated carbon. The catalysts were very efficient for the photodegradation of total organic carbon (TOC) from industrial phosphoric acid solution under UV irradiation. The kinetics of photocatalytic TOC degradation was found to follow a pseudo- first-order model. The prepared TiO2/ASAC showed high photoactivity for the photodegradation of TOC in the following order: TiO2/ASAC (V) 〉 TiO2/ASAC (11) 〉 TiO2/ASAC (12) 〉 ASAC 〉 TiO2 (P25).  相似文献   

14.
Nb-doped TiO2 nanoparticles were prepared by hydrothermal treatment of titanate nanotubes in niobium oxalate aqueous solution.The effect of Nb doping and rutile content on the photoelectrochemical performance based on TiO2 powder electrodes was investigated.The results show that Nb-doped TiO2 with a small amount of rutile exhibits the enhanced photoelectric conversion efficiency for dye-sensitized solar cell.The highest photoelectric conversion efficiency of 8.53%is obtained for 1%Nb—TiO2 containing a small amount of rutile.When a small amount of rutile contained in 2%Nb—TiO2,a higher photoelectric conversion efficiency of8.77%is achieved.  相似文献   

15.
The micro-alloying effects of Y on the microstructure, mechanical properties, and bio-corrosion behavior of Mg69-xZn27Ca4Yx(x= 0, 1, 2 at.%) alloys were investigated through X-ray diffraction, compressive tests,electrochemical treatments, and immersion tests. The Mg69Zn27Ca4 alloy was found to be absolutely amorphous, and its glass-forming ability decreased with the addition of Y. The Mg68Zn27Ca4Y1 alloy exhibited an ultrahigh compressive strength above 1010 MPa as well as high capacity for plastic strain above 3.1%.Electrochemical and immersion tests revealed that these Y-doped MgeZ neC a alloys had good bio-corrosion resistance in simulated body fluid(SBF) at 37℃. The results of the cytotoxicity test showed high cell viabilities for these alloys, which means good bio-compatibility.  相似文献   

16.
Most related investigations focused on the effects of borate glass on cell proliferation/biocompatibility in vitro or bone repair in vivo; however, very few researches were carried out on other cell behaviors. Three novel borate bioglasses were designed as scaffolds for bone regeneration in this wok. Comparative effects of three bioglasses on the behaviors of osteoblastic MC3T3-E1 cells were evaluated. Excellent cytocompatibility of these novel borate bioglasses were approved in this work. Meanwhile, the promotion on cell proliferation, protein secretion and migration with minor cell apoptosis were also discussed in details, which contributed to the potential clinical application as a new biomaterial for orthopedics.  相似文献   

17.
Antibacterial materials play an important role in clinical application,and silver has been known to exhibit strong cytotoxicity towards a broad range of micro-organisms.In this work,the amorphous calcium phosphate with silver substitution(Ag-ACP) was synthesized by chemical precipitation method,and the valence of silver in ACP was adjusted by temperature.The processed Ag-ACP was combined with slightly acidic compounds to form new calcium phosphate cement(CPC).Our results indicate that the valence of silver in CPC was adjusted successfully by chemical precipitation method and heat treatment.X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) results demonstrated that silver ion in CPC-1 and CPC-2 existed in Ag3PO4;after heat treatment of 460 ℃,silver became more stable in CPC-3 and CPC-4.Silver in CPC-1 and CPC-2exhibited better releasing property.After heat treatment at 460 ℃,the amount of silver ion released from CPC decreased significantly.Besides,the antibacterial ability of Ag-CPC was adjusted by changing the valence of silver in Ag-CPC.Depending on the low valence of silver and good silver release,CPC-1 and CPC-2exhibited better antibacterial activity.We believe that this study will motivate the development and applications of antibacterial CPC in bone tissue regeneration.  相似文献   

18.
Carbon nanotubes (CNTs) were dispersed in gas atomized Cu47.5Zr47.5Al5 (CZA) and CusoZrso (CZ) amorphous powders, in an effort to elucidate the mechanisms of adhesion of CNTs onto amorphous metallic powders. CNTs were homogenously dispersed in water using a zwitterionic (ZW) surfactant. Then CZA and CZ powders were submersed in the ZW-CNTsuspensions with varying amounts of dwell time in an ultrasonic bath. The ZW-CNT- metal powder suspensions were dried, and CNT-metal composite powders were obtained after decomposition of the surfactant by calcination. Zeta potential measurements on ZW-CNT-metal powder suspensions and scanning electron microscopy investigation into the CNT-metal composite powders both indicated an ideal dwell time, for a specific alloy composition, of metallic powders in ZW-CNT suspension to achieve optimal adhesion of CNTs onto amorphous metallic powder surfaces. The results are rationalized on the basis of hydrolysis of metal ions into suspension creating a net positive charge on the metallic powder surfaces, and the interaction between the charged powder surfaces and the charged hydrophilic head groups of ZW, which has the other end attached to CNTs.  相似文献   

19.
The synthesis of Cu-doped ZnO nanosheets at room temperature was reported in our previous paper. The effects of annealing temperature on Cu-doped ZnO nanosheets were studied in this paper. Cu-doped ZnO nanosheets were annealed at 200-500℃ in air. The annealed specimens were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that Cu concentration in Cu-doped ZnO nanosheets reduced with increasing annealing temperature. When annealing temperature was lower than Zn melting point (410℃), the morphologies of the Cu-doped ZnO nanosheets remained nearly the same as that before annealing. However, when the annealing temperature was over Zn melting point, Cu-doped ZnO nanosheets changed to nanowires, wormlike nanosheets or did not change. The change of Cu concentration in Cu-doped ZnO nanosheets is explained by oxidation thermodynamics. A physical model is suggested to explain the morphology changes of Cu-doped ZnO nanosheets, based on the existence of Cu-rich layer beneath Cu-doped ZnO nanosheets.  相似文献   

20.
GdNi5 nanoparticles and GdNis/Gd2O3 nanocapsules (with GdNi5 core and Gd2O3 shell) were prepared by arcdischarge technique under different hydrogen partial pressure. The GdNi5 nanoparticles show irregular spherical shape and have a size distribution of 10-50 nm with an average diameter of 15 nm. In comparison, the GdNi5/Gd2O3 nanocapsules present spherical morphology and show a size distribution of 10-100 nm with an average diameter of 60 nm. Under a magnetic field change of 50 kOe, the maximum magnetic entropy change of GdNi5 nanoparticles is 13.5 J/(kg K) at 5 K, while the corresponding value of the GdNis/Gd2O3 nanocapsuels is only 5.7 J/(kg K) at 31 K. The origin of the large magnetic entropy change of GdNi5 nanoparticles is ascribed to its high atomic moments and small anisotropy energy barrier induced by its small particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号