首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduced graphene oxide-Fe3O4(rGO—Fe3O4) composite has been prepared via a facile and effective hydrothermal method by synthesizing Fe3O4 nanospheres on the planes of reduced graphene oxide(rGO).Characterizations suggest the successful attachment of Fe3O4 nanospheres to rGO sheets.The rGO—Fe3O4composite(66.7 wt%of Fe3O4 in the composite) exhibits a stable capacity of 668 mAh g-1 without noticeable fading for up to 200 cycles in the voltage range of 0.001—3.0 V,and the superior performance of rGO-Fe3O4 is clearly established by comparison of the results with those from bare Fe3O4 nanospheres(capacity declined to 117 mAh g-1 only at the 200 th cycle).The excellent electrochemical performance of rGO—Fe3O4 composite can be attributed to the fact that the uniform dispersion of the Fe3O4 nanospheres growing on the rGO sheets avoids aggregation during Li uptake-release cycling,which is desired for cycle stability.Meanwhile,the rGO sheets afford not only elastic buffer to alleviate the volume variations of Fe3O4nanospheres,but also good ionic and electronic transport medium in the electrode.  相似文献   

2.
Ceramic coatings were prepared on AZ91 D Mg alloy by micro-arc oxidation (MAO) in aluminate electrolytes, with Al2O3 nano-additive suspending at different concentrations. Effects of nano-additive concentration on the structure, phase composition, hardness and anti-corrosion property of the MAO coatings were analyzed by scanning electron microscopy, X-ray diffraction, micro-hardness test and electrochemical method, respectively. The results revealed that Al2O3 nano-particles were mostly incorporated into ceramic coating chemically, transferred into MgAl2O4, rather than being trapped mechanically during MAO process. With the increase of Al2O3 concentration, the voltage-time response, content of MgAl2O4, hardness and anti-corrosion property increased. However, when the concentration varied from 10 g/L to 15 g/L, these behaviors and properties changed only a little. This result indicated that, after the concentration of Al2O3 nano-additive reaching 10 g/L, the incorporation of Al2O3 nano-particles turned into a saturation state, due to the complex process during MAO treatment. Therefore, 10 g/L might be a proper concentration for MAO coating to incorporate Al2O3 nano-particles,  相似文献   

3.
Sol—gel coatings offer a number of advantages over other methods of protection for metallic materials.In the present work,3-mercaptopropyltrimethoxysilane(MPTS) was used as the precursor for sol—gel coating on aluminium metal.The gelation of MPTS sol—gel was characterized by Fourier transform infrared spectroscopy(FT-IR) studies.The formed film was found to be stable up to 350 ℃ as evident from thermogravimetric analysis.X-ray diffraction study and scanning electron microscopy supported the formation of MPTS coating on aluminium surface while the characterization of the coating was done by FT-IR studies.The corrosion inhibition potential of the sol—gel coatings on metal in 3.5%(w/v) of NaCI solution was assessed as a function of different concentrations of MPTS using electrochemical polarization and impedance measurements.The corrosion inhibition efficiency was found to increase with increasing MPTS concentration.The results of the study unravel the use of MPTS as a precursor in the formation of sol—gel coating over aluminium surface so as to protect the metallic surface from corrosion in neutral environment.  相似文献   

4.
The mechanical properties,chemical properties and biocompatibility of Mg-3Sn—0.5Mn alloy were tested.A series of in vitro evaluations such as tensile test,static and dynamic immersion test,hemocompatibility test as well as cytotoxicity test were presented,with commercial magnesium alloy WE43 as the control.Mg-3Sn-0.5Mn alloy possesses suitable strength and superior ductility compared with WE43 and AZ31.Static immersion and dynamic degradation tests showed more uniform degradation with a more moderate rate for Mg—3Sn—0.5Mn alloy(0.34 mm/y in static condition and 0.25 mm/y in dynamic condition)compared with WE43 alloy(0.42 mm/y in static condition and 0.33 mm/y in dynamic condition) in Hank's solution.Blood compatibility evaluation suggested that Mg—3Sn—0.5Mn alloy had no destructive effect on erythrocyte and showed excellent anti-thrombogenicity to blood system.Besides,Mg—3Sn—0.5Mn alloy showed no inhibition effect to L929 metabolic activity and mild toxicity to vascular smooth muscle cell(VSMC) in preliminary cell viability assessment.By considering its excellent mechanical strength,corrosion resistance,low ion release rate and good biocompatibility,Mg—3Sn—0.5Mn alloy may be a promising economical candidate as biomedical implant material for load-bearing clinical applications in the future.  相似文献   

5.
Nickel-gamma alumina(Ni—γAI2O3) composite coatings were synthesized by pulsed electrodeposition technique with different concentrations of alumina(0,10,20 and 50 g/L) in Watt’s bath.Both ultrasonic vibration and magnetic-stirring were utilized to disperse Al2O3 and to achieve its optimum loading.Microstructure shows that agglomerates occur at higher loadings,but 10 g/L Al2O3 addition in bath has shown uniform dispersion of alumina with improved mechanical properties such as hardness,Young’s modulus and yield strength by 40%,46%and 35%,respectively,when compared to that of pure Ni coating.Further,elasto-plastic indentation mechanics has shown that strength at 29%strain is enhanced to 110.5 GPa for 10 g/L Al2O3electrophoretically deposited Ni—yAI2O3 coating when compared to that of electrodeposited Ni(81.8 GPa).  相似文献   

6.
The LiYF4 single crystals singly doped Ho3+ and co-doped Ho3+, Pr3+ ions were grown by a modified Bridgman method. The Judd-Ofelt strength parameters (Ω2, Ω4, Ω6) of No3+ were calculated according to the absorption spectra and the Judd-Ofelt theory, by which the radiative transition probabilities (A), fluorescence branching ratios (β) and radiative lifetime (τ rad) were obtained. The radiative lifetimes of 5/6 and 5/7 levels in Ho3+ (1 mol%):LiYF4 are 10.89 and 20.19 ms, respectively, while 9.77 and 18.50 ms in Ho3+/pr3+ doped crystals. Hence, the τ rad of 5/7 level decreases significantly by introduction of Pr3+ into Ho3+:LiYF4 crystal which is beneficial to the emission of 2.9 μm. The maximum emission cross section of Ho3+:LiYF4 crystal located at 2.05 μm calculated by McCumber theory is 0.51 ×10-20 cm2 which is compared with other crystals. The maximum emission cross section at 2948 nm in Ho3+/pr3+ co-doped LiYF4 crystal obtained by Fuchtbauer- Ladenburg theory is 0.68 × 10-20 cm2, and is larger than the value of 0.53 × 10-20 cm2 in Ho3+ singly doped LiYF4 crystal. Based on the absorption and emission cross section spectra, the gain cross section spectra were calculated. In the Ho3- ions singly doped LiYF4 crystal, the gain cross sections for 2.05 μm infrared emission becomes positive once the population inversion level reaches 30%. It means that the pump threshold for obtaining 2.05 μm laser is probably lower which is an advantage for Ho3+-doped LiYF4 2.05 μm infrared lasers. The calculated gain cross section for 2.9 μm mid-infrared emission does not become positive until the population inversion level reaches 40% in Ho3+/pr3+:LiYF4 crystal, but 50% in Ho3+ singly doped LiYF4 crystal, indicating that a low pumping threshold is achieved for the H03+:5/6 → 5/7 laser operation with the introduction of Pr3+ ions. It was also demonstrated that Pr3+ ion can deplete rapidly the lower laser Ho3+:5/7 level and has influence on t  相似文献   

7.
As a leading surface modification approach,hydrosilylation enables freestanding silicon nanocrystals(Si NCs) to be well dispersed in a desired medium.Although hydrosilylation-induced organic layers at the NC surface may somehow retard the oxidation of Si NCs,oxidation eventually occurs to Si NCs after relatively long time exposure to air.We now investigated the oxidation of hydrosilylated Si NCs in the frame work of density functional theory(DFT).Three oxygen configurations that may be introduced by the oxidation of a Si NC are considered.It is found that a hydrosilylated Si NC is less prone to oxidation than a fully H-passivated Si NC in the point of view of thermodynamics.At the ground state,backbond oxygen(BBO) and hydroxyl(OH) hardly change the gap between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of a hydrosilylated Si NC.At the excited state,the decrease in the HOMO-LUMO gap induced by the introduction of doubly bonded oxygen(DBO) is more significant than that induced by the introduction of BBO or OH.We have correlated the changes in the optical absorption(emission) of a hydrosilylated Si NC after oxidation to those of the HOMO—LUMO gap at the ground state(excited state).  相似文献   

8.
In view of the earthwork construction tions, and earthworks cannot be verified, using with long duration, heavy and complicated construction condivirtual reality technology to simulate the process of its construction. As a hydropower project for an example, the terrain model using AutoCAD and 3DS Max combination of building, equipment model in 3DS max using entity model building. In the transporting section, will be built in 3DS max key frame together with the model of import in the EON and set the parameters of the animation node; In digging scene, using multiple place nodes to control of the excavator digging operation ; Interaction part of the scene, using the built-in mouse node (Click Sensor) and keyboard nodes (Keyboard Sensor) implementation scenarios and user interaction. Research shows that through excellent virtual reality software EON to apply virtual reality technology in earthwork construction simulation stage, found possible quality problems and potential safety problems in engineering, through the simulation can be more perfect earthwork construction. Verified, earthwork construction of virtual real earthworks has certain guidance and reference value.  相似文献   

9.
A new three-component and magnetically responsive NiFe2O4@PANI@Ag nanocomposite has been fabricated by coating of nickel ferrite, NiFe2O4, nanoparticles with polyaniline (PANI) and subsequent immobilization of silver nanoparticles onto the surface of polyaniline shell. The as-prepared nanocomposite has been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The saturation magnetization of the NiFe2O4 core decreases dramatically after coating with polyaniline and silver nanoparticles, however, the nanocomposite NiFe2O4@PANI@Ag can be still separated from solution media through magnetic decantation. The antibacterial activity of the synthesized nanocomposite was studied and compared with those of naked NiFe2O4, NiFe2O4@PANI and some standard antibacterial drugs.  相似文献   

10.
The origin of a high mechanical quality in CuO-doped (K, Na)NbO3-based ceramics is addressed by considering the correlations between the lattice positions of Cu ions and the hardening effect in K0.48Na0.52+xNbO3-0.01CuO ceramics. The Cu ions simultaneously occupy K/Na and Nb sites of these ceramics with x = 0 and 0.02, only occupy the K/Na site of the ceramics with x= -0.02, and mostly form a secondary phase of the ceramics with x = -0.05. The Cu ions lead to the hardening of ceramics with an increase of Ec and Qm by only occupying the K/Na site, together with the formation of double hysteresis loops in un-poled compositions. A defect model is proposed to illuminate the origin of a high Qm value, that is, the domain stabilization is dominated by the content of relatively mobile O2- ions in the ceramics, which has a weak bonding with CUK/Na defects.  相似文献   

11.
Ce-incorporated apatite(Ce-HA) nano-scale particles with different Ce percentage contents(atomic ratio of Ce to Ce + Ca is 5%,10%and 20%,respectively) were synthesized via a simple wet chemical method in this study.The crystal structure,chemical groups,thermal stability,crystal morphologies and crystal sizes of the Ce-HA nano-particles were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and transmission electron microscopy(TEM).The influences of reaction temperature,reaction time,pH value,and the atomic ratio of Ce to Ce + Ca on the structure and performance of Ce-HA particles were studied.The results show that the lattice constants,particle sizes,crystallinity and thermal stability of Ce-HA vary with the doped Ce contents.With the increase of Ce content,the lattice constants of the Ce-HA nano-particles remarkably increase but the particle size,crystallinity and thermal stability gradually decrease.The reaction temperature as well as the reaction time has no significant effect on the properties of the final products,while the pH value has a direct relationship with their final chemical composition.The obtained Ce-HA nanosize particles possess potential application in preparing artificial bone implants,bone tissue engineering scaffold and other bioactive coatings.  相似文献   

12.
A route combining powder metallurgy and subsequent friction stir processing was utilized to fabricate carbon nanotube(CNT) reinforced Al(CNT/AI) and 6061 Al(CNT/6061AI) composites.Microstructural observations indicated that CNTs were uniformly dispersed in the matrix in both CNT/AI and CNT/6061 AI composites.Mg and Si elements tended to segregate at CNT—Al interfaces in the CNT/6061 AI composite during artificial aging treatment.The tensile properties of both the Al and 6061 Al were increased by CNT incorporation.The electrical conductivity of CNT/AI was decreased by CNT addition,while CNT/6061 AI exhibited an increase in electrical conductivity due to the Mg and Si segregation.  相似文献   

13.
Three types of photocatalysts were synthesized by metal organic chemical vapor deposition and impregnation methods using the almond shell activated carbon as support. These photocatalysts denoted by (TiO2/ASAC (V), TiO2/ASAC (11) and TiO2/ASAC (12)) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and nitrogen adsorption-desorption isotherms. SEM observation shows that TiO2 was deposited on activated carbon surface. XRD results confirm that TiO2 existed in a mixture of anatase and rutile phases. The DRS spectra show the characteristic absorption edge of TiO2 at approximate 380 nm corresponding to the optical band gap of 3.26 eV. Besides, FTIR spectrum indicated the presence of (Ti-O) groups. The specific surface area of photocatalysts decreased drastically in comparison with the original activated carbon. The catalysts were very efficient for the photodegradation of total organic carbon (TOC) from industrial phosphoric acid solution under UV irradiation. The kinetics of photocatalytic TOC degradation was found to follow a pseudo- first-order model. The prepared TiO2/ASAC showed high photoactivity for the photodegradation of TOC in the following order: TiO2/ASAC (V) 〉 TiO2/ASAC (11) 〉 TiO2/ASAC (12) 〉 ASAC 〉 TiO2 (P25).  相似文献   

14.
Nb-doped TiO2 nanoparticles were prepared by hydrothermal treatment of titanate nanotubes in niobium oxalate aqueous solution.The effect of Nb doping and rutile content on the photoelectrochemical performance based on TiO2 powder electrodes was investigated.The results show that Nb-doped TiO2 with a small amount of rutile exhibits the enhanced photoelectric conversion efficiency for dye-sensitized solar cell.The highest photoelectric conversion efficiency of 8.53%is obtained for 1%Nb—TiO2 containing a small amount of rutile.When a small amount of rutile contained in 2%Nb—TiO2,a higher photoelectric conversion efficiency of8.77%is achieved.  相似文献   

15.
In-situ dendrite-reinforced metallic glass matrix (MGM) composites with the composition of Zr58.5Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 were prepared with a vacuum arc melter by the copper mold suction casting. Effect of different normal loads and sliding velocities on the tribological properties of MGM composites was studied. The results showed that the friction coefficient and wear rate of composites initially descended with increasing the normal load and reached a minimum of 0.339 and 1.826 × 10^-4 mm^3/(N m) at 10 N, respectively, then ascended. Similarly, the friction coefficient and wear rate of composites initially decreased with the increase in the sliding velocity and reached a minimum of 0.330 and 2.389 × 10^-4 mm^3/(N m) at 0.4 m/s and 0.3 m/s, respectively, then raised. The wear mechanism of composites was mainly adhesive wear accompanied by abrasive wear at lower normal load and sliding velocity. However, the wear mechanism of composites was abrasive wear and adhesive wear as well as delamination at higher normal load and sliding velocity due to the nucleation and propagation of surface and subsurface cracks during the wear process. The flake-like and particle-like wear debris was the dominant shapes of debris observed.  相似文献   

16.
The micro-alloying effects of Y on the microstructure, mechanical properties, and bio-corrosion behavior of Mg69-xZn27Ca4Yx(x= 0, 1, 2 at.%) alloys were investigated through X-ray diffraction, compressive tests,electrochemical treatments, and immersion tests. The Mg69Zn27Ca4 alloy was found to be absolutely amorphous, and its glass-forming ability decreased with the addition of Y. The Mg68Zn27Ca4Y1 alloy exhibited an ultrahigh compressive strength above 1010 MPa as well as high capacity for plastic strain above 3.1%.Electrochemical and immersion tests revealed that these Y-doped MgeZ neC a alloys had good bio-corrosion resistance in simulated body fluid(SBF) at 37℃. The results of the cytotoxicity test showed high cell viabilities for these alloys, which means good bio-compatibility.  相似文献   

17.
Most related investigations focused on the effects of borate glass on cell proliferation/biocompatibility in vitro or bone repair in vivo; however, very few researches were carried out on other cell behaviors. Three novel borate bioglasses were designed as scaffolds for bone regeneration in this wok. Comparative effects of three bioglasses on the behaviors of osteoblastic MC3T3-E1 cells were evaluated. Excellent cytocompatibility of these novel borate bioglasses were approved in this work. Meanwhile, the promotion on cell proliferation, protein secretion and migration with minor cell apoptosis were also discussed in details, which contributed to the potential clinical application as a new biomaterial for orthopedics.  相似文献   

18.
Antibacterial materials play an important role in clinical application,and silver has been known to exhibit strong cytotoxicity towards a broad range of micro-organisms.In this work,the amorphous calcium phosphate with silver substitution(Ag-ACP) was synthesized by chemical precipitation method,and the valence of silver in ACP was adjusted by temperature.The processed Ag-ACP was combined with slightly acidic compounds to form new calcium phosphate cement(CPC).Our results indicate that the valence of silver in CPC was adjusted successfully by chemical precipitation method and heat treatment.X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) results demonstrated that silver ion in CPC-1 and CPC-2 existed in Ag3PO4;after heat treatment of 460 ℃,silver became more stable in CPC-3 and CPC-4.Silver in CPC-1 and CPC-2exhibited better releasing property.After heat treatment at 460 ℃,the amount of silver ion released from CPC decreased significantly.Besides,the antibacterial ability of Ag-CPC was adjusted by changing the valence of silver in Ag-CPC.Depending on the low valence of silver and good silver release,CPC-1 and CPC-2exhibited better antibacterial activity.We believe that this study will motivate the development and applications of antibacterial CPC in bone tissue regeneration.  相似文献   

19.
Carbon nanotubes (CNTs) were dispersed in gas atomized Cu47.5Zr47.5Al5 (CZA) and CusoZrso (CZ) amorphous powders, in an effort to elucidate the mechanisms of adhesion of CNTs onto amorphous metallic powders. CNTs were homogenously dispersed in water using a zwitterionic (ZW) surfactant. Then CZA and CZ powders were submersed in the ZW-CNTsuspensions with varying amounts of dwell time in an ultrasonic bath. The ZW-CNT- metal powder suspensions were dried, and CNT-metal composite powders were obtained after decomposition of the surfactant by calcination. Zeta potential measurements on ZW-CNT-metal powder suspensions and scanning electron microscopy investigation into the CNT-metal composite powders both indicated an ideal dwell time, for a specific alloy composition, of metallic powders in ZW-CNT suspension to achieve optimal adhesion of CNTs onto amorphous metallic powder surfaces. The results are rationalized on the basis of hydrolysis of metal ions into suspension creating a net positive charge on the metallic powder surfaces, and the interaction between the charged powder surfaces and the charged hydrophilic head groups of ZW, which has the other end attached to CNTs.  相似文献   

20.
The synthesis of Cu-doped ZnO nanosheets at room temperature was reported in our previous paper. The effects of annealing temperature on Cu-doped ZnO nanosheets were studied in this paper. Cu-doped ZnO nanosheets were annealed at 200-500℃ in air. The annealed specimens were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that Cu concentration in Cu-doped ZnO nanosheets reduced with increasing annealing temperature. When annealing temperature was lower than Zn melting point (410℃), the morphologies of the Cu-doped ZnO nanosheets remained nearly the same as that before annealing. However, when the annealing temperature was over Zn melting point, Cu-doped ZnO nanosheets changed to nanowires, wormlike nanosheets or did not change. The change of Cu concentration in Cu-doped ZnO nanosheets is explained by oxidation thermodynamics. A physical model is suggested to explain the morphology changes of Cu-doped ZnO nanosheets, based on the existence of Cu-rich layer beneath Cu-doped ZnO nanosheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号