首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve oxidation resistance of carbon/carbon(C/C) composites,a SiC/SiC-MoSi_2-ZrB_2 double-layer ceramic coating was prepared on C/C composites by two-step pack cementation.The phase compositions and microstructures of as-prepared multilayer coating were characterized by X-ray diffraction and scanning electron microscopy.The oxidation resistance at 1773 K and the effect of thermal shock between 1773 K and room temperature on mechanical performance of coated specimens were investigated.The results show that the SiC/SiC-MoSi_2-ZrB_2 coating exhibits dense structure and is composed of SiC,Si,MoSi_2 and ZrB_2·It can protect C/C composites from oxidation at 1773 K for more than 510 h with weight loss of 0.5%.The excellent anti-oxidation performance of the coating is due to the formation of SiO_2-ZrSiO_4 complex glassy film.The coating can also endure the thermal shocks between 1773 K and room temperature for 20 times with residual flexural strength of 86.1%.  相似文献   

2.
A C/SiC/Si-SiC multilayer coating for protecting carbon/carbon(C/C) composites against oxidation was prepared by slurry and pack cementation.X-ray diffraction(XRD) and energy dispersive spectroscopy(EDS) analysis showed that the inner coating obtained from the slurry and pack cementation was a C/SiC gradient layer acting as bonding layer,and the exterior coating formed in the second pack cementation was a Si-SiC double phase coating.Oxidation tests at 1873 K in air showed that the coating exhibited excellen...  相似文献   

3.
In order to improve the anti-oxidation property of carbon/carbon (C/C) composites, a novel SiC-Si-ZrSiO4 multiphase oxidation protective coating was produced on the surface of C/SiC coated carbon/carbon compo ites by a pack cementation technique. The phase composition and microstructure of the as-prepared coatings were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy) and EDS (energy dispersive spectroscopy). Oxidation behavior of the multiphase coated C/C composites was also investigated. It showed that the as-prepared coating characterized by excellent oxidation resistance and thermal shock re- sistance could effectively protect C/C composites from oxidation at 1773 K for 57 h in air and endure the thermal cycle between 1773 K and room temperature for 12 times, whereas the corresponding weight loss is only 1.47%. The excellent oxidation protective ability of the SiC-Si-ZrSiO4 coating could be attributed to the C/SiC gradient inner layer and the multiphase microstructure of the coating.  相似文献   

4.
Two-dimensional(2D) carbon/carbon(C/C) composites with multilayered texture, especially with different thickness of high-textured(HT) pyrocarbon layer, were prepared by isothermal, isobaric chemical vapor infiltration(CVI) technique. The influence of matrix microstructure on mechanical properties of C/C composites was investigated by polarized light microscopy, scanning electron microscopy and three-point bending test. The results show that the samples with multilayer-textured pyrocarbon matrix own a higher flexural strength than the one with pure medium-textured structure, which is attributed to multiple crack deflection and interfacial sliding between different textured pyrocarbon layers and between sub-layers within HT layer. The increase in thickness of HT pyrocarbon layer improves the plasticity of the samples and renders the fracture in pseudo-plastic behavior.  相似文献   

5.
A Si-Al-Ir oxidation resistant coating was prepared for SiC coated carbon/carbon composites by slurry dipping. The phase composition, microstructure and oxidation resistance of the as-prepared Si-Al-Ir coating were studied by XRD (X-ray diffraction), SEM (scanning electron microscopy), and isothermal oxidation test at 1773 K in air, respectively. The surface of the as-prepared Si-Al-Ir coating was dense and the thickness was approximately 100 μm. Its anti-oxidation property was superior to that of the inner...  相似文献   

6.
7.
裂解碳涂层对碳纤维增强碳化硅复合材料力学性能的影响   总被引:4,自引:0,他引:4  
采用先驱体裂解-热压烧结方法制备出Cf/SiC复合材料,探讨了裂解碳涂层和烧结温度对复合材料纤维/基体界面和力学性能影响,烧结温度为1800度时,由于其中由富碳界面相构成的纤维/基体界面相使纤维/基体界面结合适中,具有较好的力学性能。  相似文献   

8.
A W-Mo-Si/SiC double-layer oxidation protective coating for carbon/carbon (C/C) composites was prepared by a two-step pack cementation technique. XRD (X-ray diffraction) and SEM (scanning electron microscopy)results show that the coating obtained by the first step pack cementation was a thin inner buffer layer of SiC with some cracks and pores, and a new phase of (WxMo1-x)Si2 appeared after the second step pack cementation. Oxidation test shows that, after oxidation in air at 1773 K for 175 h and thermal cycling between 1773 K and room temperature for 18 times, the weight loss of the W-Mo-Si/SiC coated C/C composites was only 2.06%. The oxidation protective failure of the W-Mo-Si/SiC coating was attributed to the formation of some penetrable cracks in the coating.  相似文献   

9.
10.
C/SiC/Si-Mo-Cr复合涂层碳/碳复合材料力学性能研究   总被引:3,自引:1,他引:3  
采用包埋法和涂刷法在碳/碳复合材料表面制备了一种新型的C/SiC/Si-Mo-Cr复合高温抗氧化涂层. 借助XRD和SEM等测试手段对所制备复合涂层的微观结构进行了表征, 采用三点弯曲试验研究了涂层处理及热震试验对碳/碳复合材料力学性能的影响规律. 结果表明: 制备的多相涂层结构致密, 涂层后碳/碳复合材料弯曲强度有所增大, 断裂特征由假塑性向脆性转变. 涂层试样经1500℃至室温20次热震后, 涂层试样的弯曲强度降低, 塑性增强.  相似文献   

11.
碳/碳复合材料的氧化与防护   总被引:12,自引:1,他引:12  
碳/碳复合材料的氧化敏感性限制了它的应用,为满足未来宇航飞行器等对高温结构材料的需要,必须彻底解决碳/碳复合材料的氧化防护问题。本文在认真分析碳/碳复合材料氧化过程的基础上,全面总结了提高碳/碳复合材料的抗氧化途径,其具体方法包括:材料内部结构、纤维、基体的改进和用各种方法在其表面施加保护涂层。同时,进一步发现:一种包括硼酸盐玻璃作内涂层,以SiC、Si_3N_4、SiO_2等作为外涂层的多层涂层系统,能在1700℃以下对碳/碳复合材料提供较好的防护。  相似文献   

12.
13.
C-SiC-TiC-TiB_2复合材料等温氧化行为研究   总被引:1,自引:0,他引:1  
对原位合成的(C-SiC-TiC-TiB2)碳/陶复合材料的等温抗氧化性能进行了研究。结果表明,该材料的氧化增重和失重主要取决于碳相和陶瓷相的氧化速率和氧化层的结构特征。该材料表现出优良的抗氧化能力,这归结于在800℃时TiB2优先氧化,800~1000℃时其表面生成了一层致密的硼硅酸盐玻璃,以及在1200℃下TiO2晶粒包裹在其表面。  相似文献   

14.
包埋浸渗/气相沉积二步法在C/C复合材料表面制备SiC涂层   总被引:5,自引:0,他引:5  
采用包埋浸渗法和化学气相沉积(CVD)法相结合在炭/炭(C/C)复合材料表面制备了SiC涂层, 借助扫描电镜、能谱分析以及X射线衍射等检测手段对涂层的微观组织形貌、元素分布和物相组成进行了观察与分析. 结果表明:包埋法制备的SiC涂层与C/C复合材料基体的界面处形成了梯度过渡层, CVD法制备的涂层十分致密, 有效填充了包埋SiC涂层中的孔隙, 因此, 二步法制备的SiC涂层具有良好的防氧化性能, 涂层试样在1500℃静态空气中氧化60h失重率仅为2.01%. 试样失重的主要原因是其在高低温热循环过程中氧气从涂层中的微裂纹扩散至基体表面, 从而引起基体氧化所致.  相似文献   

15.
Oxidation protective MoSi 2 -Mo 5 Si 3 /SiC multi-coatings for carbon/carbon composites were prepared by chemical vapor reaction and slurry-sintering method. The influence of preparation technology on the structure and phase composition of the coating was investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analyses, and then their relationship was discussed. The results indicate that the Si/Mo ratio of the slurry and sintering processing were ...  相似文献   

16.
Si-SiC coating was prepared on the surface of carbon/carbon (C/C) composites by a two-step technique of pack cementation, and the influences of thermal shock between 1773 K and room temperature in air on the mechanical property and fracture behavior of the coated C/C were studied. The results show that, after thermal shock between 1773 K and room temperature for 5, 10 and 15 times, the flexural strength of coated composites increases by 4.29%, 15.00% and 24.20%, respectively. The toughness of the coated C/C enhances gradually during the thermal shock test. The improvement of the mechanical property after the thermal shock test is primarily caused by the weakening of the fiber-matrix interface and the reduction of residual thermal stresses by thermal shock.  相似文献   

17.
Oxidation protective MoSi2-Mo5Si3/SiC multi-coatings for carbon/carbon composites were prepared by chemical vapor reaction and slurry-sintering method. The influence of preparation technology on the structure and phase composition of the coating was investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analyses, and then their relationship was discussed. The results indicate that the Si/Mo ratio of the slurry and sintering processing were two main factors that significantly affected the structure and phase composition of the multi-coating. Appropriate sintering process and relatively high Si/Mo ratio were essential for preparing the multi-coating with dense structure and favorable phase composition. After being sintered at 1723 K for 2 h and with the Si/Mo ratio of the slurry being 4.5 (weight ratio), a dense structure accompanied by favorable phase composition of the coating can be obtained. When heat treated at 2373 K for 1 h, this coating became more compact and continuous. Oxidation tests (performed at 1623 and 1823 K) demonstrated that both of these two obtained multi-coatings exhibited better anti-oxidation property than single layer SiC coating.  相似文献   

18.
借助偏光显微镜、扫描电镜,透射电镜以及力学性能测试研究了微观结构对双基体炭/炭复合材料力学性能的影响.结果表明:基体炭在偏光显微镜下呈现光学各向异性,材料内部形成多层次的界面结构,热解炭呈现"皱褶状"片层结构,中间相沥青炭呈现片层条带状结构,基体炭片层的走向基本上平行于纤维轴向.材料受载破坏时裂纹通过改变扩展路径而延缓其扩展速度,在纤维-基体界面处以及基体炭片层之间引起滑移,在断口形貌上体现出锯齿状的断裂形式,材料具有韧性断裂的特征,抗弯强度最高可达223MPa.  相似文献   

19.
为了提高C/C复合材料的高温抗氧化性能,设计了网状的SiC填充高性能的MoSi2和微量的TiSi2涂层。用包埋法制备了C/C复合材料SiC-MoSi2-TiSi2复相陶瓷单层涂层,对制备涂层的化学形成机理进行了分析。结果表明,在选择的实验条件下,制备设计的涂层是完全可行的,实验制备的涂层在1773K有氧环境下具有良好的抗氧化性能。涂层抗氧化性能的提高是因为在高温氧化下涂层表面产生了致密、连续、稳定的玻璃质氧化物。  相似文献   

20.
炭/炭复合材料抗氧化研究进展   总被引:2,自引:2,他引:2  
C/C复合材料的高温氧化性能限制了其在高温领域的更广泛应用.简要介绍了C/C材料的氧化机理,综述了两种主要的抗氧化方法,即基体改性和涂层技术;并就涂层体系的要求、基本结构和影响因素作了详细介绍,同时对C/C复合材料抗氧化研究发展的趋势提出了一些见解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号