首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micropitting was studied using a three-contact disc machine having a central roller in contact with three harder, annular counter-discs (“rings”) of precisely controlled roughness. Roughness, running conditions, base stock and additive concentration were varied. The response of the same lubricants in a reciprocating sliding wear test operating in the boundary regime was also studied.Results of experimental studies of the rolling contact behaviour of carburised steel rollers are reported. All the tests with the additive present led to micropitting. However, severe micropitting wear was only observed when the calculated film thickness exceeded 12% of the centre-line average roughness of the rings.It was found that there was an approximately inverse correlation between the micropitting damage in the disc machine test and the mild wear in the reciprocating sliding test. This was attributed to the tendency of anti-wear additives to prevent running-in of the rough surface.  相似文献   

2.
《Wear》2006,260(9-10):1096-1103
This work presents a novel approach of sliding ball-on-disk wear tests where the disc material is investigated. Each part of the wear track on the disc is in discontinuous contact with the counterbody. The contact frequency at each part of the wear track on the disc with the counterbody is defined by the rotation frequency of the disc. The sliding speed is however a function of both the rotation frequency and wear track diameter. In this work, the effect of the contact frequency on friction and wear was investigated on carbon steel in discontinuous sliding contact with corundum balls. Various sliding speeds were used while maintaining the contact frequency at a fixed value, and various contact frequencies were applied at constant sliding speeds.The wear rate of the disk material is shown to depend not only on the usual wear test parameters, namely sliding speed and contact load, but also on contact frequency. Moreover, contact frequency is shown to be a key factor determining the wear mode even at constant sliding speed and load. At contact frequencies above 9 Hz, the dominant wear mechanism is oxidational wear, while at frequencies below 4 Hz the dominant wear mechanism is adhesive wear. This transition from adhesive to oxidational wear takes place together with a change in the type of debris generated and in the value of the coefficient of friction.The validity of the Garcia-Ramil-Celis model proposed earlier for discontinous sliding contact conditions, is demonstrated for the case of carbon steel disks sliding against a chemically inert counterbody.  相似文献   

3.
In this study, using a two-roller testing machine, the authors examined the surface durability of thermally sprayed WC-Cr-Ni cermet coating in lubricated rolling with sliding contact conditions. The coating was formed onto the axially ground, blasted and circumferentially ground roller specimens made of a thermally refined carbon steel or an induction hardened carbon steel by means of the high energy type flame spraying (Hi-HVOF) method. The WC cermet coated roller finished to a mirror-like condition was mated with the carburized steel roller without coating having a surface roughness of Ry=3.05.0 μm. In the experiments, a maximum Hertzian stress of PH=0.6 or 0.8 GPa was applied for the thermally refined carbon steel roller and PH=1.4 GPa was applied for the induction hardened carbon steel roller in line contact condition. As a result, it was found that in the case of induction hardened steel substrate, the coated roller generally exhibits a long life without any serious damage and the surface durability is hardly affected by the substrate surface finish, while in the case of thermally refined steel substrate, the durability of coated roller is lowered and the life to flaking is very short particularly when the substrate surface is circumferentially ground and the mating surface is rough. The surface durability of coated roller was also compared with the durability of steel roller without coating. Finally, in order to discuss the durability of coated roller, the elastic-plastic behavior of the subsurface layer under repeated rolling with sliding contact was analyzed using a finite element method (FEM).  相似文献   

4.
This article describes the wear characterizations of high-speed steel composed of vanadium carbide and high-chromium cast iron composed of chromium carbide. These metals were studied under rolling–sliding conditions with a sliding ratio of 10% using a self-made ring–ring wear testing machine. The fine microstructure of carbides and failure behaviors were analyzed by scanning electron microscopy and high-resolution electron microscopy. The results showed that carbide significantly affected the wear properties and failure behaviors of metals. The relative wear resistance of high-speed steel reinforced by vanadium carbides was twice that of high chromium cast iron composed of chromium carbides. Chromium carbide was characterized by a stacking fault substructure, and slips occurred in chromium carbide under high-stress contact, resulting in crack formation. Vanadium carbide was reinforced and pinned by large amounts of nanoparticles, which prevented its dislocation under high-stress rolling–sliding conditions, thereby effectively resisting crack initiation. Furthermore, the (200) lattice plane of vanadium carbide is coherent with the (111) lattice plane of austenite, preventing cracks from forming at the interface of the vanadium–carbide matrix. The morphology and hardness of vanadium carbide also contributed to the excellent wear property of high-speed steel.  相似文献   

5.
Many tribosystems are subjected to different conditions with respect to temperature and humidity. Reciprocating sliding tests with steel/steel couples were performed using a laboratory test rig in air with varying relative humidity and temperature. During each test the friction force, the total linear wear, the electrical contact resistance, and the acoustic emission were recorded. Tests with self‐mated couples of bearing steel (100r6) and of stainless steel (X10CrNiMoNb18‐10/X5CrNi18‐9) in a ball‐on‐disc arrangement revealed small effects of temperature and humidity on friction, but a strong effect of the water vapour content on the wear rate of the system. Attempts were made to correlate changes of wear behaviour with different wear mechanisms.  相似文献   

6.
K. Fujita  A. Yoshida 《Wear》1979,55(1):27-39
To study the mechanism of rolling contact fatigue failure, annealed thermally refined 0.43% carbon steel and case-hardened nickel chromium steel rollers were tested under conditions of pure rolling and sliding/rolling. The failure mechanism was examined by fractographic observation and by calculation of the amplitudes of the ratio of stress to strength.It was found that pitting cracks initiated on the roller surface and were induced by the normal stress in the circumferential direction of the roller or by the maximum principal stress. Spalling cracks initiated beneath the surface and were induced by the orthogonal shear stress.  相似文献   

7.
The friction and wear of a pure copper block (99.98 wt% Cu) against a hardened steel disc were studied. The effect of sliding velocity and load on the friction coefficient and wear rate of Cu samples during steady tests was studied. Elasto-hydrodynamic (EHL), mixed (ML) and boundary lubrication (BL) regions were analyzed using the Stribeck curve. The lubrication number of Schipper, Z, was used in the analysis of the Stribeck curve. The transitions from one lubrication region to another are discussed. The mixed EHL region is characterized by stable low values of the friction coefficient, wear rate and temperature. Straight asperity contact is the dominant mechanism under friction of Cu–steel pair in the BL region. High-friction coefficients and wear rates, thin lubricant films and large wear grooves indicate straight asperity contact between rubbed surfaces in the BL region. Although the dominant mechanisms in the mixed EHL and BL regions are different in principle, a steady friction state is preserved in both cases. It is expected that the steady friction state in the BL and mixed EHL regions is associated with deformation and fracture of surface layers but these process occur at different scale levels. It was shown that under friction of Cu–steel pair, two types of ML regions are observed. The first is the stable steady friction of mixed EHL with low values of the friction coefficient and wear rate. The second type of the ML region is the region of unstable friction and wear when a decrease of lubricant film leads to a change of external (roughness, temperature, friction and wear) and internal (strain and stress) parameters. It was found out that a transition to the unstable ML region occurs within a narrow range of Z parameter under definite values of the load and sliding velocity.  相似文献   

8.
M. Matsui  H. Kakishima 《Wear》2006,260(6):669-673
The effect of shot-peening treatment with the particulate MoS2 solid lubricant on the wear resistance of steel in the dry rolling/sliding contact wear tests was investigated. The duplex shot-peening treatment with ceramic balls and the particulate MoS2 solid lubricant provided excellent wear resistance under a severe loading and sliding condition because the uniform and minute surface roughness given by shot-peening treatment with ceramic balls could keep shot-peened MoS2 particles with a low friction coefficient on the sample surface. Furthermore, the sample surface was covered with shot-peened MoS2 particles by a MoS2 layer formed during the rolling/sliding contact wear test.  相似文献   

9.
碳化硼增强铝基复合材料的摩擦磨损性能   总被引:1,自引:0,他引:1  
为了比较两种含量不同的碳化硼颗粒增强铝基复合材料的摩擦学性能,将其加工成销试样,在多功能摩擦磨损试验机上分别与钢盘试样进行对比摩擦磨损试验,重点研究了接触载荷和相对滑动速度对两种复合材料摩擦磨损性能的影响.结果表明:碳化硼增强铝基复合材料的磨损量随载荷与相对滑动速度的增大而增大,而摩擦因数随载荷与相对滑动速度的增大而减小,较高碳化硼含量的复合材料的耐磨性能比较低含量的复合材料好.  相似文献   

10.
Q. Y. Liu  Z. R. Zhou 《Wear》2001,250(1-12):357-361
A new rolling testing apparatus was developed on a tension–compression hydraulic machine with a high precision. The aim of this paper is to study the transition of wear mechanisms of steels with the increase of tangential friction force between contact surfaces in rolling. The wear modes were particularly analyzed during the passage from rolling to mixed rolling–sliding contact.  相似文献   

11.
Jonathan Farley  Luiz C. Wrobel  Ken Mao 《Wear》2010,268(1-2):269-276
This paper focuses on the application of advanced finite element analysis to simulate the response of complex multilayer coatings when subjected to mixed rolling–sliding dry contact conditions, typical of those experienced by heavily loaded gear tooth flanks. In this study, a versatile model is developed to investigate the response of a variety of complex coatings. Through the investigation of three advanced surface coatings the developed model is shown to offer detailed subsurface stress and strain information, quantifying the benefits provided by the application of each coating.A number of rolling contact fatigue tests were also conducted to complement the computational simulations. An adapted twin disc testing machine was used to investigate the progressive wear rates of the three advanced surface coatings when subjected to mixed rolling–sliding contact at high load and in dry conditions. The result is a clear indication that advanced surface coating techniques can provide significant improvements in wear resistance and surface durability. From the rolling contact fatigue experiments conducted in this study, a multilayer tungsten carbide/carbon coating was shown to provide the most significant increase in surface durability with a 16-fold reduction in measured weight loss compared to the uncoated substrate over the 145,000 cycle test duration investigated.  相似文献   

12.
The presence of hard contaminants in lubrication can lead to the premature failure of rolling bearings. To reduce the negative effect of such contaminants, hard carbon-based coatings (diamond-like carbon; DLC) can be applied to the surfaces of steel bearings. DLC coatings generate a low friction and a high sliding wear resistance to enhance the tribological properties and improve the durability of running components. This work explores the merits of DLC coatings for use in very demanding applications, such as in highly contaminated environments. The wear properties of DLC-coated bearing rollers were evaluated by comparing them with uncoated rollers. The degree of wear found on the coated rollers was serious, especially under relatively high contaminant concentrations. The three-body abrasive wear produced a relatively coarse scoring of the coating surface, which caused the corresponding disc to suffer more damage than the disc running against an uncoated roller under the same operating conditions. The results indicate that supposedly wear-protective coatings cause even more damage to running surfaces once they have been broken up by hard contaminants, and highlight the importance of keeping the bearing coating intact. In practise, it is important to eliminate contaminants from the lubricant of rolling bearings, in particular for bearings with a DLC anti-wear coating.  相似文献   

13.
K. Fujita  A. Yoshida 《Wear》1977,43(3):315-327
The effects of changing the rolling direction and of repeated loading on the rolling contact fatigue lives of annealed 0.45% carbon steel rollers and case-hardened nickel-chromium steel rollers under conditions of sliding rolling contact were studied. The influence of plastic flow in the subsurface layer on the rolling fatigue life was examined. The increase in the rolling fatigue life of an annealed steel roller due to a change in the rolling direction was significant, especially when the rolling direction was changed just before the formation of macroscopic surface cracks and pits. The effect with case-hardened steel rollers was negligible. The varying effects of changing the rolling direction on the rolling fatigue life were due to differences in work-hardening and the extent of plastic flow in the rollers.  相似文献   

14.
Wear studies of material combinations, sliding or rolling in contact, frequently produce very inconsistent results. Thin film effects are often cited as the cause of these disparities. One means of detecting the presence of these films is by the use of electrical contact measurements to determine the degree of metal-to-metal contact.

This paper describes an experimental study of the wear behavior of grease-lubricated, cast bronze sleeve bearings running against steel, shafts at high loads, to 24.8 megapascals and a low sliding velocity of 1.6 m/min. The effects of the casting method, shaft speed and shaft finish were investigated.

Bearing torques, temperatures, contact resistances, and wear rates were monitored, during the tests. Neither the torque nor the temperature measurements could be related consistently to the wear data. On the other hand, the electrical contact resistance measurements correlated very well. Changes in wear rates were accompanied by corresponding changes in contact resistance. A region in the contact resistance measurements was identified which corresponded to a transition from low wear to high wear.  相似文献   

15.
《Wear》2006,260(4-5):523-537
Decarburisation is present on all new rails and unless ground off, will be on the running surface once installed. This paper presents a detailed investigation into the effect of decarburisation of rolling contact fatigue and wear. Twin disc testing has been used to study the phenomenon under water-lubricated rolling/sliding contact. Rail discs have been cut from grade 220 rail and heat-treated to give samples with varying depths of decarburisation. It was found that as the depth of decarburisation increased the wear rate of the rail disc increased while that of the wheel disc decreased. The effect of decarburisation on rolling contact fatigue was to increase the crack growth rate of samples with increasing depth. Cracks under rolling contact fatigue were propagated by contact stresses via the fluid pressure mechanism and influenced by microstructure. The effect of decarburisation was predicted to have little effect on rail/wheel contact when scaled from the laboratory tests using the depth of maximum shear stress.  相似文献   

16.
A rubber wheel type test apparatus has been constructed which allows abrasion testing to be conducted in slurry or dry environments in otherwise identical conditions. Abrasion tests of a steel, a sintered tungsten carbide–cobalt hardmetal and an HVOF sprayed nickel chrome–chromium carbide cermet coating have been performed in dry and aqueous slurry conditions, the latter with both neutral and acidic carriers. It has been shown that the aqueous carrier acts as an effective lubricant and thus significantly reduces the abrasion rate over that observed in dry conditions. However, enhancement of corrosion by use of an acid slurry lead to an increase in the rate of material removal over that of the neutral aqueous conditions in all cases. Increases were small for the corrosion resistant cermet coating and moderate for the steel. Significant enhancement of wear was observed for the sintered WC–Co hardmetal where rapid removal of the cobalt binder by the acid resulted in a change in dominant mechanism of carbide removal from attritive wear to pullout.  相似文献   

17.
ABSTRACT

In this article, brake discs are exposed to high thermal stress, causing thermal fatigue damage. The aim of this work is to study the evolution of the wear behavior of brake disc materials, such as cast iron, chromium steel, and metal matrix composites, under the influence of thermal fatigue. The brake disc specimens are heated and then cooled rapidly. Then, wear tests are carried out using a pin-on-disc-type tribometer. Organic and semimetallic friction materials are used for all wear tests. The results show that thermal fatigue affects the structure of the contact surfaces of all of the disc specimens by increasing their roughness. Furthermore, the wear rate of the friction materials increased, except a reduction of the wear rate is noted for the semimetallic friction material rubbing against cast iron. Moreover, thermal fatigue has no significant influence on the coefficient of friction. The worn surface of the metal matrix composite sliding against semimetallic friction material is characterized by abrasive and adhesive wear mechanisms.  相似文献   

18.
Abstract

The current work evaluates the wear and frictional performance of ultrahigh molecular weight polyethylene (UHMWPE) and high density polyethylene (HDPE) sliding against different metal counterfaces, stainless steel(SS), mild steel (MS) and aluminium (Al), under dry contact condition. The experiments were conducted using pin on disc machine at different sliding distances (0–40·32 km), 15 N applied load and 2·8 m s–1 sliding velocity. Interface temperatures and frictional forces were measured simultaneously during the sliding, while specific wear rates were determined for every 1·68 km sliding distance. Based on the optical microscopy of the worn surface and wear track, frictional and wear results were analysed and discussed. The experimental results showed that the type of counterface material significantly influences both frictional and wear performances of the selected polymers. This was mainly due to the film transfer characteristics. Higher temperature and friction coefficient for UHMWPE and HDPE were evident when sliding took place against Al counterface. Sliding the polymers against stainless steel showed low friction coefficients compared to other counterfaces.  相似文献   

19.
滚动与滑动耦合作用下GCr15钢的磨损行为研究   总被引:1,自引:0,他引:1  
王勇华  朱华  李刚  吴兆宏 《轴承》2005,(8):24-26
选用GCr15钢在M2000磨损试验机上进行了干摩擦和油润滑的摩擦磨损试验,用表面粗糙度仪测量试件在不同磨损阶段的表面形貌,用称重法测量其磨损量,分析了滚动与滑动耦合作用下GCr15钢的磨损机理。研究表明,在滚动与滑动耦合作用下GCr15钢的磨损以滑动摩擦磨损为主,温度和润滑条件直接决定着GCr15钢的磨损情况。  相似文献   

20.
The surfaces of a heavily loaded ball-joint were initially covered with a sliding spray and suffer wear. A solution is found by incorporating UHMWPE pads (Ultra high molecular weight polyethylene) with a carbon fibre/epoxy reinforced ring as sliding material into the chairs of the structure, while the steel ball-side is covered with a Zn-phosphate primer coating, protecting against corrosion. The local static and dynamic behaviour of the hybrid UHMWPE pads in contact with steel or Zn-coated counterfaces has been large-scale tested on loading capacity, low friction and wear resistance. For protection of the sliding counterface against wear, a polymer lip covering the carbon ring has been experimentally designed to flow over the carbon ring under high contact pressures, assuming the retained polymer disc under hydrostatic conditions. As such, the soft coating resists extremely high contact pressures (150 MPa) with good adhesion to the steel ball. However the application method should be carefully selected, sprayed coatings are the most favourable for low initial static friction. Calculated bulk and flashtemperatures revealed that the UHMWPE melting temperature is not exceeded, although softening of the coating under high contact pressures may be favourable for a ‘self-repairing’ ability. Pre-sliding creep and intermediate wear paths as manifesting in the ball-joint were simulated, indicating that the maximum design coefficient of friction is not exceeded. Test results are compared to FEM-calculations to verify the practical applicability of the modified sliding system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号