首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究线接触摩擦副织构化表面动压润滑性能,建立其理论模型,并运用多重网格法进行数值分析,探讨工况参数(载荷、转速)和微织构参数(面积占有率、深径比)对表面油膜压力的影响;在MMW-1A摩擦磨损试验机上研究微织构面积占有率与摩擦因数的关系。结果表明,线接触条件下微织构化表面的油膜平均压力随着载荷和转速的增大而增大,随着微织构面积占有率的增大而先增大后减小,随着深径比的增大而减小;而摩擦因数随着微织构面积占有率的增大而先减小后增大再减小;存在最优的微织构面积占有率,使得油膜平均压力最大和摩擦因数最小。试验结果较好地验证了数值模拟结果,表明线接触摩擦副织构化表面具有较好的减摩特性。  相似文献   

2.
为研究动压润滑状态下粗糙度对织构的影响,建立正弦波粗糙度对织构化表面影响的动压润滑理论模型,并采用有限差分法对模型进行求解,分析正弦波粗糙度幅值、波长和分布方式对织构滑移表面油膜压力分布、承载力和摩擦因数的影响。数值计算结果表明:垂直分布粗糙度对表面综合性能的提高优于平行分布粗糙度,有利于提高表面的承载能力及降低摩擦因数;粗糙度波长及幅值对动压性能的影响则与织构深度和粗糙度的分布方式有很大关系。  相似文献   

3.
以动压滑动轴承为研究对象,根据流体动压润滑原理,建立圆形微凹坑织构化动压滑动轴承油膜数学模型,推导织构化滑动轴承油膜厚度修正公式;结合Reynolds方程有限差分法的求解方法,分析全织构和织构化参数(间距、深度)对动压滑动轴承圆周方向压力分布的影响。结果表明:分布在轴承上的全织构会引起油膜压力的变化;织构位于不同的位置时对圆形微凹坑织构滑动轴承的油膜压力的影响是不同的,对于不同间距和深度的织构,当织构位于升压区时,动压滑动轴承具有较好的润滑、承载性能,而织构位于降压区和全织构时不利于轴承承载。  相似文献   

4.
提出一种求解表面织构动压轴承油膜力的解析模型。基于Sommerfeld油膜边界,通过分离变量的方法,求解表面织构动压滑动轴承二阶偏微分Reynolds方程,得到表面织构动压滑动轴承油膜压力解析式。以圆形凹坑轴承为例,在油膜区域通过积分求得织构轴承的油膜力,分析织构参数对油膜压力的影响,研究发现,表面织构位于收敛区域(升压区)的轴承,其润滑与承载性能优于表面织构位于发散区域(降压区)的轴承、全织构轴承以及光滑轴承。对比了提出的解析模型与FDM和CFD模型在不同长径比和偏心率下的计算结果,结果表明,提出的解析模型能准确地描述表面织构动压滑动轴承的油膜力,且计算结果同FDM和CFD模型计算结果基本一致,验证了该模型的正确性。  相似文献   

5.
以计入表面微凹坑的动压滑动轴承为研究对象,基于凹坑流量平衡建立了油膜特性数学模型,采用差分法离散求解得到了轴承静、动特性及稳定性参数随微凹坑深度、面积率、形状和排布方式的变化规律,对比了光滑表面的轴承特性计算结果.结果表明,凹坑形状、分布、尺寸等因素显著影响油膜承载力、流量、偏位角、平均温升等静特性参数和刚度、阻尼等动特性参数;其中,最优的微凹坑深度使得油膜承载能力最大提高了15.3%,失稳转速最大提升了6.9%.针对计入表面微凹坑动压轴承的研究具有参考价值.  相似文献   

6.
表面织构对错位瓦轴承静动特性的影响   总被引:1,自引:0,他引:1  
为研究表面织构对错位瓦轴承的静动特性的影响,在错位瓦轴承表面制备几何形状为半正弦波、矩形、三角形的表面织构,建立表面织构错位瓦轴承的流体动力学润滑模型,采用有限细胞算法求解雷诺方程和能量方程,得到错位瓦轴承的关键静动特性参数,对比有无表面织构情况下的最小油膜厚度、最大油膜压力、温升、功耗和流量、刚度和阻尼等参数。结果表明:相对于光滑表面,织构增加了流量和最大油膜压力,降低了温升,减小了最小油膜厚度,同时使临界质量有所降低;在定载荷及不同转速工况下矩形织构性能最优,其最小油膜厚度最小,最大油膜压力和临界质量最大,正弦织构性能次之,三角形织构性能最差;在定转速及不同转速工况下,矩形织构轴承承载能力最大,正弦织构次之,三角形织构最小,但三角形织构临界质量最大,轴承稳定性最好。  相似文献   

7.
《流体机械》2017,(5):16-20
采用正弦粗糙峰表征粗糙表面,建立了织构化粗糙机械密封端面流体动压润滑模型,研究了粗糙度、微凹坑织构几何参数对润滑性能的影响。结果表明:利用数值分析方法研究微凹坑织构对机械密封流体动压润滑性能影响时,不能忽略粗糙度、微凹坑之间的相互影响和边界压力的影响;存在最佳的微凹坑深度和面积密度使织构机械密封端面的流体动压润滑效应达到最佳。  相似文献   

8.
浮环轴承内螺纹织构深度会改变织构区域油膜厚度,导致浮环轴承油膜动态特性变化,从而影响涡轮增压器转子-轴承系统运行稳定性以及工作寿命。基于流体润滑理论,推导含表面织构的浮环轴承油膜控制方程,揭示内螺纹织构深度与浮环轴承油膜特性之间的关系。以某型涡轮增压器浮环轴承为例,分析内螺纹织构深度对轴承油膜最大压力、油膜承载力、刚度、阻尼等的影响。建立浮环轴承双油膜润滑分析流体动力学模型,利用CFD方法对油膜动态特性进行分析,研究织构深度从6 μm增至12 μm时的油膜特性。结果表明:在轴颈转速1×103~2.1×105 r/min范围内,随着织构深度的增加,油膜最大压力、内外油膜承载力、刚度阻尼系数呈现先增大后减小的趋势;在转速超过1×105 r/min后,织构对油膜动态特性系数提升更明显;与无织构轴承相比,织构深度为8 μm时,油膜承载力、刚度阻尼等动态特性提升最大。研究表明,在合适的织构深度下,织构可以改善油膜特性,提升轴承的运转稳定性,延长工作寿命。  相似文献   

9.
表面织构技术是在材料表面制备出具有一定排列规则的几何阵列的技术。该技术能够有效改善材料表面的摩擦学性能,现已越来越广泛地应用于众多工程领域。为了研究表面微织构对于材料表面摩擦学性能的影响,应用ANSYS Fluent软件分别对相同区域内流经光滑表面及V形、三角形、矩形、圆形微织构表面的油膜进行仿真计算。分析对比了不同形貌的微织构对于油膜内部压力分布的影响。结果表明:微织构的存在能够使油膜内部压力产生明显变化,油膜内部有回流产生,使摩擦副表面产生了流体动压效应。油膜内部产生了正压区与负压区,当油膜内部压力低于其自身的饱和蒸气压时,会有空化效应产生。为在材料表面应用微织构提升摩擦学性能提供了良好的理论基础。  相似文献   

10.
为进一步探究表面形貌对气体箔片轴承的影响,采用数值分析方法分析不对中情况下表面粗糙度和表面微织构对径向气体箔片轴承静特性的影响。利用超松弛迭代(SOR)和有限差分法对气体箔片轴承的Reynolds控制方程进行求解,通过模拟仿真分析不同微织构形状、深度、数量、占比以及表面粗糙度下轴承的静特性。研究结果表明:不同形状微织构对气体箔片轴承性能影响不同,椭圆形微织构提高轴承静特性的效果较好;微织构深度、数量和占比存在一组相对最优值,可在提升轴承承载力的同时降低摩擦力矩;与无微织构轴承相比,具有特定参数微织构的径向气体箔片轴承承载力提高了36.32%,摩擦力矩降低了1.66%。  相似文献   

11.
为研究船舶工况参数对可倾瓦推力轴承稳态和瞬态润滑特性的影响,利用Matlab建立船舶可倾瓦推力轴承热弹流体动压润滑计算模型,考虑轴瓦的热弹性变形,联立黏温方程、能量方程、油膜刚度和阻尼系数方程求解模型,研究热弹性变形以及不同载荷和转速情况下船舶可倾瓦推力轴承的润滑特性。结果表明:考虑热弹性变形时,最小油膜厚度增大,最大油膜压力和最高油膜温度降低;在正常运行工况条件下,轴瓦的热弹性变形有利于改善推力轴承的润滑性能,轴承设计时应考虑材料的抗压性和耐热性;在转速不变时随着载荷的增大,最小油膜厚度降低,最大油膜压力、温度、油膜刚度和阻尼均增加,需要特别注意重载工况下轴承的动压润滑状况;在载荷相同的情况下,随着转速的提高,油膜厚度和油膜温度增大,油膜压力变化不明显,油膜刚度和阻尼随转速增大而降低,在转速较低时下降较为明显。研究结果为优化轴承设计、提高轴承运行的可靠性和稳定性提供参考。  相似文献   

12.
以活塞式航空发动机滑动轴承为研究对象,综合考虑轴颈倾斜和轴瓦表面形貌等因素对轴承润滑特性的影响,建立滑动轴承润滑分析模型;以高斯随机表面、分形曲面、非高斯随机表面分别模拟轴瓦表面的粗糙程度,分析轴颈不对中和表面粗糙度耦合作用下油膜压力、端泄流量、承载力和轴承力矩等参数随偏心率和转速的变化规律。研究结果表明:考虑轴瓦表面形貌后轴承最大油膜压力变大,最小油膜厚度有小幅度减小;随着偏心率和转速增加,最大油膜压力、端泄流量、轴承承载力、工作力矩均增加;随着偏心率增加,考虑表面形貌时(高斯表面、分形表面、非高斯表面)的轴承油膜压力、承载力、工作力矩均变大;随着转速的增加,考虑表面形貌时的轴承润滑特性均变大,尤其是高斯表面,润滑特性变化较明显。  相似文献   

13.
运用线接触热弹性流体动压润滑理论,考虑了润滑油膜温升变化引起的圆柱滚子轴承中滚子和内圈接触表面的径向热弹性变形和表面粗糙度的影响,提出了一种计入热弹性变形和粗糙度影响的圆柱滚子轴承线接触热弹性流体动压润滑分析方法。该方法通过将热弹性变形进行热力转换,得到了滚子和内圈接触表面的材料线热膨胀系数,计算修正了滚子和轴承内圈因油膜温度场变化引起的径向热弹性变形,求得了计入热弹性变形和表面粗糙度后的油膜压力、油膜厚度、油膜温升以及径向热弹性变形量等主要润滑特性,研究了载荷、卷吸速度和滑滚比的变化对最小油膜厚度、最大油膜压力和最大油膜温升的影响规律,结果表明,热弹性变形量与最小油膜厚度处在同一量级,热弹性变形和粗糙度会对润滑特性产生明显的影响。  相似文献   

14.
基于湍流理论,利用Fluent软件研究表面织构对油水两相流体润滑下径向滑动轴承液膜压力、承载能力以及湍流动能的影响,比较织构形状、轴承转速和水含量对轴承湍流润滑性能的影响。研究表明:复杂形状织构加剧了液膜的湍流流动,导致更大的湍流动能,提高了液膜压力和承载力;随着轴承转速的增高,轴承承载能力呈线性增加;随着润滑油中含水量的增加,油膜压力增大,承载能力增大。  相似文献   

15.
李超  马庆镇  李连升  董朵 《润滑与密封》2023,48(10):182-189
以某发动机惰齿轮轴承为研究对象,采用一维动力学方法进行多工况计算,针对油孔布置、载荷方向、载荷大小、轴承转速4种因素,分析滑动轴承润滑油流量、最小油膜厚度、偏位角、最大油膜压力4个动压特性参数的变化规律。结果表明:油孔布置和载荷方向主要对润滑油流量有明显影响,而对其他3个动压特性参数影响较小;油孔数量越多,油孔在圆周方向上越靠近油膜厚度最大处,则润滑油流量越大;油孔分布越均匀,因载荷方向改变引起的流量波动越小;载荷大小和轴承转速对4个动压特性参数都有明显影响;随载荷增加,最大油膜压力大致呈线性增加,而其他3种动压特性的变化速率降低;随转速增大,最大油膜压力减小的速率逐渐降低,而其他3种动压特性大致呈线性增加。  相似文献   

16.
为了进一步提升轴承的工作性能,以某型滑动轴承为研究对象,建立流体润滑的数学模型,根据压力扰动法得到轴承动态特性系数,并在此基础上求解轴承-转子系统的失稳转速;以轴承间隙为设计变量,利用MATALA进行数值仿真,分析轴承间隙对最小油膜厚度、油膜压力分布、动态特性系数以及失稳转速的影响。仿真结果表明:增大轴承间隙以及减小轴承宽度都会使得最小油膜厚度增加;油膜压力随着轴承间隙的增加而减小;增大轴承间隙会减小轴承动态特性系数的绝对值;增大轴承间隙会减小转子的失稳转速,降低系统的稳定性。  相似文献   

17.
白锴  杨建玺  孙伟  朱有洪 《轴承》2008,(1):26-29
针对表面谐波特征的油膜轴承结构、油膜压力分布、承载能力等进行分析研究,建立了普通圆柱动压油膜轴承和表面谐波特征油膜轴承的数学模型,给出了具有表面谐波特征的油膜轴承的油膜压力和总承载力的计算公式,对两种轴承的承载能力和承载的有效区域进行了计算和统计,并对结果进行比较和分析,得出了表面谐波特征的动压滑动轴承其油膜压力和承载能力与表面谐波本身的特征--谐波数和谐波幅值有关,综合各方面因素得出谐波数等于3时其承载特性最佳的结论.  相似文献   

18.
大尺寸汽轮机动压轴承与传统汽轮机以及其他常用的更小尺寸动压轴承相比,其尺寸更大、比压更高,并不完全符合经典润滑理论的层流假设,在估算其特性参数时需要进行进一步的研究。采用有限体积法,考虑滑油温黏效应和油膜空化效应,对某典型核电动压轴承在不同转速下的静态特性进行数值分析;对比层流和紊流模型以及不同空化模型得到的数值分析结果,并与文献数据进行比较。结果表明:Realizable k-Epsilon紊流模型结合Singhal et al.空化模型适用于该型动压轴承的模拟。在此基础上获得了大尺寸汽轮机动压轴承在不同转速下的油膜厚度规律、压力分布、温度分布、润滑油流量等静态特性规律以及轴承刚度阻尼动态特性数据。  相似文献   

19.
将表面织构应用到圆柱滚子轴承内圈挡边,建立了织构化内圈挡边-滚子端面油膜润滑的数学模型。计算分析了微凹坑对套圈挡边-滚子端面油膜压力分布的影响,分析了微凹坑参数和工况条件对摩擦因数的影响规律;试验研究了在不同载荷作用下微凹坑面积率、凹坑深度和直径对轴承温升的影响。结果表明:圆柱形微凹坑可明显改善套圈挡边-滚子端面的油膜压力分布;在不同载荷下均存在最优凹坑面积率、最优凹坑直径及深度,且随着载荷增大,直径较大组织构表现出更优的减摩性能。与无织构组相比,当轴向载荷为40 N,内圈挡边分布直径为0.3 mm,深度为1.0μm,面积率为18%的圆柱形微凹坑时,轴承挡边最高温升降幅可达46.8%。  相似文献   

20.
杨浩  欧阳武  金勇  邹群 《润滑与密封》2023,48(11):45-50
为了揭示表面粗糙度对船舶水润滑高分子材料轴承润滑性能的影响规律,开展水润滑轴承弹流混合润滑理论研究;建立考虑内衬材料粗糙度和弹性变形的水润滑轴承混合润滑模型,并对模型进行仿真验证;分析内衬粗糙峰对水膜厚度、水膜压力分布和承载能力的影响规律。研究结果表明:在转速增大的过程中,内衬粗糙度的增大会减缓水膜厚度的增幅比,使轴承需要更高的转速来进入流体动压润滑状态;减小轴承内衬粗糙度能有效降低轴承起飞转速,加快轴承由混合润滑转变为流体动压润滑的过程,减小轴承与轴颈的局部接触,降低轴承异常振动噪声发生的可能性。研究结果揭示了内衬粗糙度变化对轴承润滑特性的影响机制,为水润滑轴承的优化设计提供理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号