首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nylon‐6,6 was grafted onto the surface of short glass fibers through the sequential reaction of adipoyl chloride and hexamethylenediamine onto the fiber surface. Grafted and unsized short glass fibers (USGF) were used to prepare composites with nylon‐6,6 via melt blending. The glass fibers were found to act as nucleating agents for the nylon‐6,6 matrix. Grafted glass fiber composites have higher crystallization temperatures than USGF composites, indicating that grafted nylon‐6,6 molecules further increase crystallization rate of composites. Grafted glass fiber composites were also found to have higher tensile strength, tensile modulus, dynamic storage modulus, and melt viscosity than USGF composites. Property enhancement is attributed to improved wetting and interactions between the nylon‐6,6 matrix and the modified surface of glass fibers, which is supported by scanning electron microscopy (SEM) analysis. The glass transition (tan δ) temperatures extracted from dynamic mechanical analysis (DMA) are found to be unchanged for USGF, while in the case of grafted glass fiber, tan δ increases with increasing glass fiber contents. Moreover, the peak values (i.e., intensity) of tan δ are slightly lower for grafted glass fiber composites than for USGF composites, further indicating improved interactions between the grafted glass fibers and nylon‐6,6 matrix. The Halpin‐Tsai and modified Kelly‐Tyson models were used to predict the tensile modulus and tensile strength, respectively.  相似文献   

2.
Fatigue behavior and morphology of long glass fiber reinforced semicrystalline polyamide (nylon 6,6) and amorphous polycarbonate (PC) composites were investigated. The fiber length distribution in the molded samples was calculated by image analyzer. The tension-tension fatigue loading tests at various levels of stress amplitudes were studied. The two-parameter Weibull distribution function were applied to obtain the statistical probability distribution of experimental data. A good correlation existed between the experimental data and the Weibull distribution curves. Straight line S? N curves of long glass fiber reinforced semicrystalline polyamide and amorphous polycarbonate composites at various probabilities were established. The stiffness of the composite under tension-tension fatigue loading was measured. The thermal stress history was also investigated by thermo-imaging techniques during fatigue life testing. Further, failure morphology was examined by scanning electron microscopy (SEM). The results showed that the fracture behavior of the ductile damage in polyamide is different from the brittle damage in polycarbonate.  相似文献   

3.
The fatigue lives of graphite fiber reinforced nylon composites were related uniquely to the tensile strengths of the materials. The distributions of tensile strength and fatigue life were measured and correlated with either two- or three-parameter Weibull functions. For a specific population, there existed a unique relationship between the two cumulative distributions. Thus, if the effect of an environmental variable on the distribution of strength is measured, the effect on the fatigue life can be estimated. It was also found that the mechanism of fatigue failure was influenced by the technique of fabrication. Compression molded materials failed through an isothermal, brittle mode of fracture, while injection molded materials failed in a ductile, thermal mode.  相似文献   

4.
This study examined the rupture mechanisms of an orthogonal 3D woven SiC fiber/BN interface/SiC matrix composite under combination of constant and cyclic tensile loading at elevated temperature in air. Monotonic tensile testing, constant tensile load testing, and tension–tension fatigue testing were conducted at 1100 °C. A rectangular waveform was used for fatigue testing to assess effects of unloading on the damage and failure behavior. Microscopic observation and single-fiber push-out tests were conducted to reveal the rupture mechanisms. Results show that both oxidative matrix crack propagation attributable to oxidation of the fiber–matrix interface and the decrease in the interfacial shear stress (IFSS) at the fiber–matrix interface significantly affect the lifetime of the SiC/SiC composites. A rupture strength degradation model was proposed using the combination of the oxidative matrix crack growth model and the IFSS degradation model. The prediction roughly agreed with the experimentally obtained results.  相似文献   

5.
The effect of temperature and moisture on mechanical behavior of flax fiber/starch based composites was investigated experimentally. Elastic modulus, the nonlinear tensile loading curves, and failure strain were analyzed. Neat matrix and composites with 20 and 40% weight content of fibers were tested. It was found, performing tests with different amplitudes, that microdamage development with stress is rather limited and the related elastic modulus reduction in this type of composites is not significant. It was shown that the composite elastic modulus and failure stress are linearly related to the maximum tensile stress in resin. The sensitivity of the maximum stress of the resin with respect to temperature and moisture is the source of composites sensitivity to these parameters. Constant interface stress shear lag model for stress transfer assuming matrix yielding at the fiber/matrix interface has been successfully used to explain the tensile test data. It indicates that the sensitivity of the used composite with respect to the matrix properties change could be significantly reduced by increasing the average fiber length from 0.9 mm to 1.5 mm. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

6.
The failure mechanisms of Oxide-Oxide ceramic matrix composites AS-N610 were studied at both room temperature and high temperature using tensile and fatigue tests with and without lateral and laminar notches. The unnotched coupons had an average tensile strength of 423 MPa with elastic modulus of 97 GPa at room temperature showing a perfect elastic behaviour whereas the laminar notched samples shown similar strength of 425 MPa with elastic modulus (98 GPa) revealing pseudo-ductile behaviour. A reduction in tensile strength of the oxide ceramic matrix composites was observed at high temperatures. Thermal shock experiments revealed that the retained strength of the samples quenched from 1100 °C deteriorated by ~10 % (395 ± 15 MPa). In all samples, fracture origin was observed on the mid-plane showing a higher degree of fiber pull-out, delamination and pseudo ductile behaviour. Finite element analysis confirmed higher stress concentration on the areas of failures.  相似文献   

7.
Ceramic matrix composites usually utilize carbon or ceramic fibers as reinforcements. However, such fibers often expose a low ductility during failure. In this work, we follow the idea of a reinforcement concept of a ceramic matrix reinforced by refractory metal fibers to reach pseudo ductile behavior during failure. Tungsten and molybdenum fibers were chosen as reinforcement in SiCN ceramic matrix composites manufactured by polymer infiltration and pyrolysis process. The composites were investigated with respect to microstructure, flexural- and tensile strength. The single fiber strengths for both tungsten and molybdenum were investigated and compared to the strength of the composites. Tensile strengths of 206 and 156 MPa as well as bending strengths of 427 and 312 MPa were achieved for W/SiCN and Mo/SiCN composites, respectively. The W fiber became brittle across the entire cross section, while the Mo fiber showed a superficial, brittle reaction zone but kept ductile on the inside.  相似文献   

8.
This work reports a study made to obtain carbon fiber/nylon 6,6 prepreg composites by hot‐compression molding. Thermogravimetric analysis (TG) and crystallinity degree determination were carried out to monitor the nylon 6,6 behavior during the different steps of the composite processing. The homogeneity of the carbon fiber/polymer matrix distribution was verified using microscopic analyses and the fiber content was determined by the acid‐digestion method. The results show that the processing parameters employed were adequate, allowing the manufacture of laminates with good texture and an adequate reinforcement/matrix relation (60/40). However, improvements need be done to minimize the pullout effect observed in the tensile specimens. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3114–3119, 2002  相似文献   

9.
The fatigue resistance of individual synthetic fibers can govern the performance of complex fiber assemblies such as tire cord and marine rope under certain loading conditions. This paper explores the relative performance of polyester and nylon 6,6 fibers and yarns, both dry and in aqueous solutions, primarily synthetic seawater. Fiber failure over a range of loading conditions and frequencies was found to occur at a critical cumulative strain, governed by a creep rupture process; the cyclic lifetime for both fibers is predictable using a simple creep rupture based theory. Polyester is more resistant to creep rupture, and consequently outperforms nylon 6,6 in cyclic fatigue. The advantage of polyester is considerably greater in aqueous solutions, where the performance of the nylon is diminished. Other comparisons indicate that the particular polyester fibers studied have higher stiffness and strength, lower strain to failure, and much lower hysteresis energy absorption compared with the nylon. The actual fatigue performance of complex fiber assemblies such as ropes is also limited under many conditions by factors not present in single fiber or yarn fatigue, including hysteric heating and internal and external abrasion.  相似文献   

10.
Monotonic tensile and fatigue tests of a SiC/SiC composites were conducted at 1300 °C in the full stress range. The macroscopic behaviors were studied based on the strain data. The mesoscopic morphology was observed by X-ray computed tomography, and the microanalysis was conducted using SEM, EDS and XRD. Besides, the interfacial debonding strength (IDS) were measured by nano-indenter. The results reveal that the fatigue behaviors can be divided into three zones. The inelastic strains accumulation and stiffness reduction can be observed in all three zones due to matrix cracking, interface damage, and failure of fibers. The fatigue life is long in the run-out zone because the maximum stress is lower than the proportional limit stress (PLS). In the stress-insensitive zone, the fracture depends on high-temperature and oxidation effects. The failure in the stress-sensitive zone is dominated by the fiber strength. The interface behaviors greatly affect the fatigue life above the PLS.  相似文献   

11.
The fracture behavior of 2D-woven-SiC-fiber/SiC-matrix composites (2D-SiCf/SiC) has been studied under monotonic tensile test conditions in air at room temperature. The specimens statically fatigued at 90% σR showed a higher ultimate tensile strength (UTS) and failure strain than those of the original ones. Microstructural observations suggest that the static fatigue process enhances slow crack growth (SCG) mechanisms in fibers and the extensive fiber/matrix debonding after fatigue could be responsible of the enhanced final strength observed. Ultimate tensile stress has been evaluated from mirror radii of broken fibres, although this method turns up to overestimate experimental data. In contrast, the fracture behavior of Nicalon fiber bundles agrees with the results obtained in these composites.  相似文献   

12.
Interphase plays an important role in the mechanical behavior of SiC/SiC ceramic-matrix composites (CMCs). In this paper, the microstructure and tensile behavior of multilayered (BN/SiC)n coated SiC fiber and SiC/SiC minicomposites were investigated. The surface roughness of the original SiC fiber and SiC fiber deposited with multilayered (BN/SiC), (BN/SiC)2, and (BN/SiC)4 (BN/SiC)8 interphase was analyzed through the scanning electronic microscope (SEM) and atomic force microscope (AFM) and X-ray diffraction (XRD) analysis. Monotonic tensile experiments were conducted for original SiC fiber, SiC fiber with different multilayered (BN/SiC)n interfaces, and SiC/SiC minicomposites. Considering multiple damage mechanisms, e.g., matrix cracking, interface debonding, and fibers failure, a damage-based micromechanical constitutive model was developed to predict the tensile stress-strain response curves. Multiple damage parameters (e.g., matrix cracking stress, saturation matrix crack stress, tensile strength and failure strain, and composite’s tangent modulus) were used to characterize the tensile damage behavior in SiC/SiC minicomposites. Effects of multilayered interphase on the interface shear stress, fiber characteristic strength, tensile damage and fracture behavior, and strength distribution in SiC/SiC minicomposites were analyzed. The deposited multilayered (BN/SiC)n interphase protected the SiC fiber and increased the interface shear stress, fiber characteristic strength, leading to the higher matrix cracking stress, saturation matrix cracking stress, tensile strength and fracture strain.  相似文献   

13.
Reinforcement of cementitious materials with short fibers has been proved to be an economical and effective way to convert these brittle materials to ductile products. Many fibers with different geometries have been used as reinforcement materials. Fibers bonding to cementitious materials play an important role in mechanical performance of these composites. This article describes the performance of (homemade) fibers as reinforcement in cement‐based materials by investigation on bonding characteristic of fiber to cement matrix. To this end, the fibers (glass, polypropylene, polyacrylonitrile (PAN), and high strength nylon 66 (N66)) are characterized using microscopy analysis, tensile strength, and alkali attack tests. The fibers embedded in the cement matrix, then, pulled‐out to evaluate their bonding to cementitious materials. SEM analysis is used to study fiber/cement interfacial transition zone. The results show that PAN fibers have the advantages of preparing for cementitious reinforcement. It was found that the reinforcing efficiency of fibers‐reinforced cementitious composites was strongly depending on interfacial contact area in fiber/matrix interface and chemical/physical properties of fibers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Flexural fatigue tests were conducted on injection-molded short fiber composites, carbon fiber/poly(phenylene ether ketone) (PEK-C) and glass fiber/PEK-C (with addition of polyphenylene sulfide for improving adhesion between matrix and fibers), using four-point bending at stress ratio of 0.1. The fatigue behavior of these materials was presented. By comparing the S-N curves and analyzing the fracture surfaces of the two materials, the similarity and difference of the failure mechanisms in the two materials were discussed. It is shown that the flexural fatigue failure of the studied materials is governed by their respective tensile properties. The matrix yielding is main failure mechanism at high stress, while at lower stress the fatigue properties appear fiber and interface dominated. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1857–1864, 1997  相似文献   

15.
高性能复合材料弯曲疲劳性能研究   总被引:3,自引:0,他引:3  
用湿法缠绕技术制作了CF/5228预浸料,对热压罐固化的CF/5228复合材料的力学性能和弯曲疲劳性能进行了研究,并用扫描电镜、电子显微镜等对复合材料的疲劳损伤机理进行了微观表征和理论探讨。研究表明,M40J/5228复合材料比M40/5228具有更为优异的耐疲劳性能。复合材料的疲劳损伤主要有纤维断裂、基体开裂和界面剪切破坏3种表现形式,通常复合材料构件的疲劳破坏多为3种形式的综合表现。基体增韧、选用高强高模碳纤维、界面强化和铺层优化是提高复合材料构件耐疲劳性能有效手段。  相似文献   

16.
A study of hygrothermal aging in terms of the kinetics of moisture absorption by nylon 6,6 and its carbon fiber reinforced composites has been carried out. The single free phase model of absorption has been applied to the kinetic data and thereafter the values of diffusivity have been evaluted. The diffusivity was found to be dependent on the conditioning temperatures and the volume fraction of fibers. Dynamic mechanical properties of unaged and aged samples were studied using a free resonance torsion pendulum which covers a temperature range of 350°C. Incorporation of carbon fibers has led to an increase in structural rigidity of the nylon 6,6 matrix especially at higher temperatures. This was reflected by the sharp increase in the relative shear modulus as the glass transition temperature of nylon 6,6 is appoached. Absorbed moisture was observed to plasticize the polymer matrix and decreased the temperatures of all the transitions. For instance, the α-transition was shifted by almost 95°C. The intensities of the transition peaks of both unaged and aged samples were found to decrease with fiber volume fraction. Increasing the conditioning temperatures has resulted in a reduction of the shear storage modulus and this effect was found to be more pronounced in the reinforced nylon 6,6. This has been attributed to the increase in the extent of degradation at the fiber-matrix interface.  相似文献   

17.
Quality of interfacial bond between fibers and matrix determines the post-cracking behavior of fiber-reinforced composites. Fatigue-induced interface deterioration between fibers and matrix has not been investigated systematically which prevents understanding of premature failure of fiber-reinforced composites subject to fatigue. This study experimentally investigated the deterioration mechanism of flexible fibers in brittle matrix subject to fatigue load. Specifically, the effect of fatigue-induced deterioration of interface between micro-PVA fiber and cement matrix was studied through the single fiber fatigue pullout tests and the micro-structural deterioration mechanism of the fiber-matrix interface under fatigue load was unveiled. It was found that fatigue load leads to fiber debonding which can be described by an empirical relation similar to the Paris' law. Fatigue-induced interface hardening can occur during fiber debonding stage as well as fiber slippage stage. Oil-treatment on surface of micro-PVA fiber was demonstrated as a mean to mitigate such fatigue-induced interface hardening.  相似文献   

18.
为揭示平纹Cf/SiC复合材料的拉伸损伤演化及失效机理,开展了X射线CT原位拉伸试验,获得材料的三维重构图像,利用深度学习的图像分割方法,准确识别出拉伸裂纹并实现其三维可视化。分析了平纹Cf/SiC复合材料损伤演化与失效机理,基于裂纹的三维可视化结果对材料损伤进行了定量表征。结果表明:平纹Cf/SiC复合材料的拉伸力学行为呈现非线性,拉伸过程中主要出现基体开裂、界面脱黏、纤维断裂及纤维拔出等损伤;初始缺陷易引起材料损伤,孔隙多的部位裂纹数量也多;纤维束外基体裂纹可扩展至纤维束内部,并发生裂纹偏转。基于深度学习的智能图像分割方法为定量评估陶瓷基复合材料损伤演化与失效机理提供了有效分析手段。  相似文献   

19.
A three-dimensional (3D) representative volume element (RVE) model was developed for analyzing effective mechanical behavior of fiber-reinforced ceramic matrix composites with imperfect interfaces. In the model, the fiber is assumed to be perfectly elastic until its tensile strength, and the ceramic material is modeled by an elasto-plastic Drucker-Prager constitutive law. The RVE model is then used to study the elastic properties and the tensile strength of composites with imperfect interfaces and validated through experiments. The imperfect interfaces between the fiber and the matrix are taken into account by introducing some cohesive contact surfaces. The influences of the interface on the elastic constants and the tensile strengths are examined through these interface models.  相似文献   

20.
The effect of the fiber surface modification with an azide derivative on the morphology and properties of composites based on poly(propylene) (PP) and short poly(ethylene terephthalate) (PET) and nylon 66 (PA) fibers, has been investigated. Both organic fibers act as reinforcement of the PP, and the reinforcing effect increases with the introduction of azide groups on the chemical structure of the fibers. This effect is more sensible in PP/short PET fiber composites although PA fibers gives rise to higher improvements in toughness. Scanning electron microscopy (SEM) has shown that the azide treatment of PET fibers gives rise to a better wettability and adhesion at the fiber/matrix interface. A good correlation between SEM and mechanical behavior of the composites has been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号