首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
电解质材料是锂离子电池的关键材料之一,它直接影响电池的性能。新型硼酸锂盐由于种类繁多且环境友好而越来越引起人们的重视。本研究详细介绍了近年来应用于锂离子电池的各种新型硼基锂盐LiBOB,LiMOB,LiBMB和LiODFB。对这些硼基锂盐的合成方法、电化学性能、稳定性、在溶剂中的溶解性、电导率进行了论述。并讨论了它们的优缺点及在锂离子电池中的应用前景。  相似文献   

2.
介绍了一种新型锂盐二氟草酸硼酸锂(LiODFB)的基本性质和制备进展,以及在锂离子电池应用中的基本特性.使用LiODFB电解液的电池电化学性能优良、对电极材料相容性较好、与其他锂盐混合使用性能良好,有望成为动力电池用电解质锂盐。  相似文献   

3.
随着对大型储能电池的需求逐渐增加,钠离子电池由于其资源丰富,价格低廉且与锂性质相似等优点而被广泛关注。在钠离子电池的关键材料选择中,钠离子电池的电化学性能和安全性同时受电解液的影响,这不仅决定了电池的电化学窗口和能量密度,而且还控制着电极/电解液界面的性质。本文首先综述了钠离子电池电解质的基本要求、主要分类,重点讨论了对钠离子电池电解质的选择性要求及不同钠盐的物化性能和对固体电解质界面的影响;其次针对不同溶剂和材料的兼容性以及材料在不同溶剂体系中的储能机制等,分别对材料在醚类和酯类电解液中获得的固体电解质界面特点、倍率性能、循环性能等展开分析。最后指出钠离子电池电解质未来在与材料的匹配、关键性表征方法等方面的发展路线。  相似文献   

4.
锂金属电池被认为是最具潜力的高能量密度储能器件之一,但是锂金属电池负极低库仑效率及不可控的枝晶生长等问题阻碍了其商业化进程.在锂金属电池中,电解液会直接参与固态电解质界面膜(SEI)的形成,对锂金属负极的库仑效率、枝晶生长等产生重要影响.传统LiPF6基酯类电解液中,锂金属库仑效率低,且锂枝晶现象严重.近年来通过电解液添加剂、溶剂、锂盐以及锂盐浓度等途径调控电解液化学,在锂金属负极保护上取得了显著效果.例如,采用与锂金属负极兼容性更佳的醚类溶剂,可以降低电解液与锂金属的反应性;采用多种添加剂与新型锂盐复配可以有效抑制锂枝晶的形成;采用高浓度锂盐电解液,可以形成稳定SEI膜等.本文综述了锂枝晶的生长原理以及通过溶剂、锂盐、添加剂和高浓度电解液等策略调控电解液化学保护锂金属电池负极的研究现状,总结了各种途径的优势及局限性.并对锂金属电池电解液的发展提出了新的见解,以激发新的策略面对锂金属电池后续的挑战.  相似文献   

5.
目前锂离子电池由于使用液态电解液面临着诸多问题,如工作温度范围窄、热稳定性差、容易泄露和生成锂枝晶等。发展全固态锂电池是提升电池能量密度和安全性的可行途径之一,而作为锂电池材料研究热点的有机-无机复合固态电解质,由于其兼具有机物和无机物的优点,有望运用于下一代全固态锂电池之中。本文首先概述了固态电解质的种类及传导机制,而后详细阐述了有机-无机复合固态电解质中聚合物基质和锂盐的选择以及不同维度无机填料对电解质性能尤其是力学性能的影响,最后提出了有机-无机复合固态电解质的研究总结与展望。  相似文献   

6.
随着二次电池的逐渐发展,金属锂为负极的电池体系以其优异的能量密度脱颖而出,但其稳定性和安全性较差的问题亟待解决。电解液作为锂离子在正负极之间传输的载体,决定了锂离子的液相传输过程和迁移速率,同时还会与金属锂负极发生界面反应生成固体电解质界面膜(SEI),电解液的组分变化会极大程度上影响SEI膜的组成和结构。电解液改性能够有效调控金属锂沉积过程,是改善金属锂负极电化学性能的重要途径。本文从电解液对锂离子沉积的影响因素出发,分析了液相传质、SEI膜的形成、电荷转移等基本过程对锂离子沉积的调控机理,总结归纳了溶剂分子、锂盐浓度、添加剂等对金属锂沉积过程的影响,介绍了溶剂混用、复合锂盐、局部高浓度电解液、双功能添加剂等电解液改性促进均匀锂沉积的方法,分析了各种改性方法对实现均匀锂沉积的作用机理,并展望了这些方法的发展趋势。  相似文献   

7.
综述了近年来锂离子电池的新型锂盐--双乙二酸硼酸锂(LiBOB)研究成果.介绍了双乙二酸硼酸锂的合成方法、组成与结构、化学和电化学性能及其与结构的关系,重点综述了对LiBOB电解液导电性的研究,对负极材料、正极材料稳定性的研究,以及与其他锂盐在锂离子电池中混合使用时的性能的研究等.总结了LiBOB的优缺点,指出了其进一步研究的方向.  相似文献   

8.
锂离子电池用有机电解液和聚合物电解质的研究进展   总被引:4,自引:0,他引:4  
从导电锂盐、有机溶剂和添加剂三个方面详细综述了锂离子电池用有机电解液的研究进展。同时针对聚合物电解质的组成、结构和性能的差异,将其分为四类,阐述了它们的优缺点及其在锂离子电池中的应用与研究进展。最后展望了电解质的发展前景。  相似文献   

9.
锂盐是获得安全性能良好的锂离子二次电池的重要因素。聚合物锂盐具有高电导率、宽电化学窗口、良好热稳定性和电化学稳定性,以及在全固态锂离子电池中的应用引起了国内外研究者的关注。文中分析了聚合物锂盐的结构与电池性能之间的关系,包括结构对材料的热稳定性、力学性能、锂离子迁移数、离子电导率和电化学窗口等的影响。总结了聚合物锂盐的合成方法,综述了均聚物型、共聚物型和离子液体型等具有代表性的聚合物锂盐在锂离子电池电解质中的应用研究进展,并对未来新型锂盐的研究方法及发展方向进行了展望。  相似文献   

10.
锂盐是获得安全性能良好的锂离子二次电池的重要因素。聚合物锂盐具有高电导率、宽电化学窗口、良好热稳定性和电化学稳定性,以及在全固态锂离子电池中的应用引起了国内外研究者的关注。文中分析了聚合物锂盐的结构与电池性能之间的关系,包括结构对材料的热稳定性、力学性能、锂离子迁移数、离子电导率和电化学窗口等的影响。总结了聚合物锂盐的合成方法,综述了均聚物型、共聚物型和离子液体型等具有代表性的聚合物锂盐在锂离子电池电解质中的应用研究进展,并对未来新型锂盐的研究方法及发展方向进行了展望。  相似文献   

11.
In recent years, the rapid development of modern society is calling for advanced energy storage to meet the growing demands of energy supply and generation. As one of the most promising energy storage systems, secondary batteries are attracting much attention. The electrolyte is an important part of the secondary battery, and its composition is closely related to the electrochemical performance of the secondary batteries. Lithium-ion battery electrolyte is mainly composed of solvents, additives, and lithium salts, which are prepared according to specific proportions under certain conditions and according to the needs of characteristics. This review analyzes the advantages and current problems of the liquid electrolytes in lithium-ion batteries (LIBs) from the mechanism of action and failure mechanism, summarizes the research progress of solvents, lithium salts, and additives, analyzes the future trends and requirements of lithium-ion battery electrolytes, and points out the emerging opportunities in advanced lithium-ion battery electrolytes development.  相似文献   

12.
Solid-state polymer electrolytes are highly anticipated for next generation lithium ion batteries with enhanced safety and energy density. However, a major disadvantage of polymer electrolytes is their low ionic conductivity at room temperature. In order to enhance the ionic conductivity, here, graphene quantum dots (GQDs) are employed to improve the poly (ethylene oxide) (PEO) based electrolyte. Owing to the increased amorphous areas of PEO and mobility of Li+, GQDs modified composite polymer electrolytes achieved high ionic conductivity and favorable lithium ion transference numbers. Significantly, the abundant hydroxyl groups and amino groups originated from GQDs can serve as Lewis base sites and interact with lithium ions, thus promoting the dissociation of lithium salts and providing more ion pathways. Moreover, lithium dendrite is suppressed, associated with high transference number, enhanced mechanical properties and steady interface stability. It is further observed that all solid-state lithium batteries assembled with GQDs modified composite polymer electrolytes display excellent rate performance and cycling stability.  相似文献   

13.
随着新能源汽车产业的迅速发展,消费者对电动汽车续航里程的要求不断提高。高镍三元锂离子电池因其比能量高成为电动汽车中最具应用前景的动力电池,但该电池体系依然面临着低温性能差的问题。本文综述近年来高镍三元锂离子电池低温性能的研究进展,重点总结高镍三元锂离子电池低温性能的影响因素,一方面从热力学角度分析低温下高镍三元正极材料和石墨负极材料的结构变化、电解液相态和溶剂化结构变化以及黏结剂玻璃化转变对电池低温性能的影响;另一方面从动力学角度分析高镍三元电池低温放电过程中的速率控制步骤。归纳目前高镍三元锂离子电池低温性能的主要改善措施,其中低温电解液的设计包括优化溶剂、改善锂盐及使用新型添加剂三个方面,对电极材料低温性能的改善主要是通过体相掺杂、表面包覆及材料颗粒粒径降低的方式。总结电池中低温性能研究中存在的对电池低温热力学特性研究不够明确、对电池低温动力学过程研究方式单一以及对电池中的反应顺序存在的影响认识不足等问题。  相似文献   

14.
综述了二次锂离子电池聚合物电解质的最新研究进展,对不同类型的聚合物电解质按其基体进行分类,包括常见的几种聚合物基体以及近年来发展起来的几种新型聚合物基体。对于每类基体相关的研究成果,主要关注的是电化学性能。对一些性能优异的聚合物电解质体系及其相应的制备方法,给出了较为全面的概述。与使用液体有机电解质的二次锂离子电池相比...  相似文献   

15.
锂离子电池电解质六氟磷锂的制备技术   总被引:1,自引:0,他引:1  
结合国内外对锂离子电池电解质六氟磷锂的研究,介绍了六氟磷锂4种制备方法的研究进展,即气-固反应法、HF溶剂法、配合物法和溶液法,并总结了各方法的优缺点,其中,配合物法和溶液法以其方便快捷等优点成为未来六氟磷锂制备技术的发展趋势。  相似文献   

16.
研究了亚磷酸三苯酯(TPPi)作为锂离子电池电解液的稳定剂对电解液稳定性和电化学性能的影响。在锂离子电池电解液中加入0.1%的TTPi通过常温储存、定期进行取样分析检测电解液的物理指标,并且用储存过的电解液和新配制的不含TPPi的电解液分别制作电池进行电化学性能测试,结果表明,TPPi的加入延长了电解液的保质期且对电池的电化学性能没有负面影响。  相似文献   

17.
介绍一种新型的可用于锂离子电池的锂盐:LiODFB(lithium oxalyldifluoroborate).LiODFB独特的化学结构,使其结合了双乙二酸硼酸锂(LiBOB)及四氟硼酸锂(LiBF4)的优势.与LiBOB相比,LiODFB在碳酸酯中的溶解性和溶剂的黏度有了明显改善,从而使锂离子电池具有更好的低温性能和倍率放电性能.而与LiBF4相比,LiODFB能促进稳定固态电解液界面(solid electrolyte interface,SEI)的形成,改善了锂离子电池的高温性能.该种新型锂盐还具有以下优点:与金属锂的化学稳定性好,在高电位下能够很好地使铝箔得到钝化和提高锂离子电池安全性能及抗过充的能力.这些性能使得LiODFB成为一种极有可能替代LiPF6的新型锂盐.  相似文献   

18.
Conventional liquid electrolytes based lithium‐ion batteries (LIBs) might suffer from serious safety hazards. Solid‐state polymer electrolytes (SPEs) are very promising candidate with high security for advanced LIBs. However, the quintessential frailties of pristine polyethylene oxide/lithium salts SPEs are poor ionic conductivity (≈10−8 S cm−1) at 25 °C and narrow electrochemical window (<4 V). Many innovative researches are carried out to enhance their lithium‐ion conductivity (10−4 S cm−1 at 25 °C), which is still far from meeting the needs of high‐performance power LIBs at ambient temperature. Therefore, it is a pressing urgency of exploring novel polymer host materials for advanced SPEs aimed to develop high‐performance solid lithium batteries. Aliphatic polycarbonate, an emerging and promising solid polymer electrolyte, has attracted much attention of academia and industry. The amorphous structure, flexible chain segments, and high dielectric constant endow this class of polymer electrolyte excellent comprehensive performance especially in ionic conductivity, electrochemical stability, and thermally dimensional stability. To date, many types of aliphatic polycarbonate solid polymer electrolyte are discovered. Herein, the latest developments on aliphatic polycarbonate SPEs for solid‐state lithium batteries are summarized. Finally, main challenges and perspective of aliphatic polycarbonate solid polymer electrolytes are illustrated at the end of this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号