首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polydimethylsiloxane(PDMS)-polystyrene(PS) interpenetrating polymer network(IPN) was prepared and characterized by FTIR, TGA, WCA, swelling experiments, and SEM. The IPN was used for pervaporation(PV) recovery of butanol. Both the permeation flux and separation factor increased with feed temperature, and both water and butanol fluxes increased with feed concentration, while no obvious effect of concentration on separation factor was found. Through the formation of IPN structure, the total flux of PDMS-PS IPN pervaporation membrane increased greatly with the decrease of separation factor. At the feed temperature of 60 °C, the IPN membrane obtained a total flux of 920.3 g/m~2 h with a separation factor of 9.5.  相似文献   

2.
Hydroxyl terminated polybutadiene(HTPB) based polyurethane(PU)-polystyrene(PS) interpenetrating polymer network(IPN) was prepared and characterized by FTIR, TGA, WCA, swelling experiments, and SEM. The IPN was used for pervaporation(PV) recovery of butanol. Both the permeation flux and separation factor increased with feed temperature, and both water and butanol fluxes increased with feed concentration while no obvious effect of concentration on separation factor was found. Through the formation of IPN structure, the total flux of HTPB based PU increased greatly with the decrease of separation factor. At the feed temperature of 60 °C, the IPN membrane obtained a total flux of 613.3 g/m~2 h with a separation factor of 6.15.  相似文献   

3.
Cetyltrimethylammonium bromide(CTAB) was incorporated into silicon carbide whiskers(SiC_w) to improve their hydrophobicity. The solution casting method was employed to develop composite membranes of polyvinylidene fluoride(CTAB-SiC_w/PVDF) with different feed ratios. FT-IR spectroscopic studies proved that CTAB was successfully incorporated into the SiC_w. SiC_w phase structure was maintained after modification by CTAB according to XRD results. SEM studies indicated that the surface became smoother with CTAB dispersal in the PVDF membrane. The dielectric properties of the composite membranes containing various amounts of CTAB-SiC_w were measured at low temperature. It was found that the dielectric constant of the composite membranes with 13.0 wt% whiskers reached a maximum value of 25 at low frequency, and decreased to nine at high frequency(from 500 Hz to 1 MHz) at 0 ℃. The dielectric loss of each composite membrane increased with increasing temperature and reached a maximum value. The value shifted with corresponding frequency increases. In addition, the dielectric loss reached a maximum value of 0.2 when 16.7 wt% of CTAB-SiC_w was fed at each frequency(from-30 ℃ to 10 ℃). At room temperature, the dielectric constant could be maintained at 42 and the loss factor decreased to 0.8 at 100 Hz when 13.0 wt% of CTABSiC_w was incorporated. Additionally, TGA experiments indicated that the decomposition temperature of a PVDF membrane was increased by 10 ℃ and its heat resistance was improved by adding 13.0 wt% of CTAB-SiC_w. This PVDF composite membrane has potential for use as an insulator and capacitor.  相似文献   

4.
To improve the hydrophilicity and anti-fouling performance in water treatment,both entrapped method and deposited method were used to modify polyvinylidene fluoride(PVDF)porous membrane with composite Al2O3/TiO2 nano-particles.Neat PVDF membrane was prepared and its property was also compared with that of the modified membranes.Membrane permeation flux and anti-fouling performance were measured using a membrane cell.The contact angle between water and membrane surface was detected in order to denote the membrane hydrophilicity.Membrane morphology and surface structure were examined by atomic-force microscopy(AFM)and scanning electron microscopy(SEM).Experimental results showed that modified membranes had higher permeation fluxes than that of the neat PVDF membrane.The addition of nano-particles altered membrane surface morphology and increased surface roughness.Due to the hydrophilicity of nano-particles,however,the membrane anti-fouling performance was improved instead of worsened.The entrapped membrane exhibited better anti-fouling performance than the deposited membrane and the neat membrane.  相似文献   

5.
With the aim of providing effective periodontal disease therapeutic method, multilayer membranes which were loaded with drug for guided tissue regeneration were prepared using an immerseprecipitation phase inversion technique. Single layer, bi-layer and tri-layer membranes were fabricated with chitosan used as cartier and tinidazole as medicine model which was loaded on the membrane. The influence of layer on structure and properties of membrane were studied by SEM, UV spectrophotometer and mechanical test. Drug release properties of three types of layer membranes were also investigated. The results showed that release rate could be slown down in both bi-layer and tri-layer membranes (to 11 days and 14 days respectively) and tri-layer membrane lasted the longest. After a process of rapid release, the concentration of tinidazole which was released by the membrane was maintained at an efficient dosage level. Compared with single layer and bi- layer membranes, we found tri-layer membrane could play a role in controlling low-rate drug release especially at the early stage of release, and keep an efficient dosage at affected part for a long period of time. The loss of drug which loaded on membrane decreased from 84.6% for single layer to 13.04% for tri-layer. The mechanical strength of three types of membrane were detected and showed that it could meet the requiremens of clinical practice. The membranes especially with tri-layer could be more valuable in application.  相似文献   

6.
A novel NF membrane prepared with poly(amidoamine) (PAMAM) dendrimer and trimesoyl chloride (TMC) by interfacial polymerization on polysulfone (PSF) ultrafiltration membrane was investigated. Field emission scanning electron microcopy (FESEM) ,atomic force micrograph(AFM) and contact angle(CA) of pure water on PA and PSF substrate were employed to characterize the chemical and physical properties of membranes. The PAMAM concentration,retention of salt solutions and organics were studied on the performance of the NF membrane. From the analyses of SEM and AFM,the polyamide active skin layers of the composite membranes are dense,rough,and finely dispersed nodular structures,packed tightly by the spherical globules. The contact angle of PA nanofitration membrane decreased after polymerization. The higher PAMAM concentration can result in lower flux and higher rejection. The salt rejection of PA membranes decreases in the order K2SO4 > Na2SO4 > MgSO4 > MgCl2 > CaCl2 > NaCl,which indicates that the resulting membranes is nagatively charged. The pH increases from 3 to 10 in the feed resulting in the decrease of the flux and the increase of the rejection for Na2SO4 solution. The molecular weight cut off (MWCO) of the composite NF membrane is nearly 860 kg/mol. The resulted PA membrane can be used to separate small organics and salt solutions.  相似文献   

7.
This study examined the individual and simultaneous adsorption of SOx (SO2) and NOx (NO-NO2) on activated carbon prepared from waste palm shell. The adsorption process was examined in a fixed bed reactor at low temperatures (100―300℃). For individual adsorption without any catalytic activation, SOx showed good adsorption whereas NOx was very much poor. In the simultaneous adsorption of SOx and NOx, SOx showed greater adsorption affinity than NOx. For palm shell activated carbon (PSAC) impregnated with metal catalyst (Ni and Ce) the concentration adsorbed profile showed that the amount of SOx adsorbed decreased regularly, while the amount of the adsorbed NOx increased irregularly. The properties of the pure and impregnated PSAC were analyzed by BET, SEM and EDX. These investiga-tions indicated that PSAC impregnated with metal catalyst is the determining factor in the adsorption of SOx and NOx simultaneously.  相似文献   

8.
The dual-bath coagulation method was used for the preparation of PES membrane in this experiment. The main intent of this stndy was to assess the efforts of gelation conditions on the structures and properties. The dense top layer as well as porous supporting layer can be made by duel-bath coagulation method simultaneous- ly. Different internal quench medium obtained different membrane with different structures. With the increase in time in the first coagulation bath, pure water flux decreased and the clearance rates of urea and creatinine both first increased then decreased and increased slightly in the end. With the temperature of the second coagtdation bath increasing, pure water flux increases and the clearance rates of urea and creatinine first increases then de- creases and increases a little at last. Higher DMSO concentration (wt/wt) in the second coagulation bath results in the increase of pure water flux and the decrease of urea & creatinine clearance rates.  相似文献   

9.
A series of bi A-SPAES(Ds=0.4)/phosphotungstic acid(PWA/bi A-SPAES)composite membranes with various contents of PWA were prepared and characterized by FT-IR.Scanning electron microscopy(SEM)images indicated the PWA were well dispersed within polymer matrix.These composite membranes were evaluated for proton exchange membranes(PEM)in direct methanol fuel cell(DMFC).These membranes showed good thermal stability.It was found that the water uptake of these membranes increased with the increase of the PWA content in the hybrid membranes.Meanwhile,the introduction of inorganic particles increased both the proton conductivity and the methanol permeability.The proton conductivities of composite membranes were increased from 0.017 S/cm to 0.045 S/cm at 20 ℃ and from 0.054 S/cm to 0.093 S/cm at 100 ℃ with the increase of PWA content from 0 to 50 %.Especially,all the methanol diffusion coefficients(4.20×10-8-1.05×10-7cm2/s)of bi A-SPAES/PWA hybrid membranes are much lower than that of Nafion 117 membrane(2.1×10-6 cm2/s).Bi A-SPAES/PWA hybrid membranes were therefore proposed as candidates of material for PEM in DMFC.  相似文献   

10.
Although many superwetting materials have been designed for the treatment of oil-containing wastewater, separation strategies for oil-in-water systems containing bacteria have rarely been reported. Herein, poly(vinylidene difluoride)-and poly(lactic acid)-blended fibrous membranes loaded with silver and copper oxide nanoparticles were successfully prepared by a two-step method of electrostatic spinning and liquid-phase synthesis. The product membrane showed excellent super-oleophilic properties ...  相似文献   

11.
Four sensing membranes based on fluorescence quenching were prepared by sol-gel method and CA membrane method, and the Ru( Ⅱ ) complexes, Ru( bpy )3 Cl2 and Ru(phen)3 Cl2, were used as the indicators. The results indicate that the volume fraction of oxygen Ψo2 have a linear relationship in large scale with tanΨ0/ tanΨfor all of the sensing membranes. They have super properties such as excellent limit of detection ,fast re-sponse time and good reproducibility. The stability of the sensing membranes made by sol-gel method is better than those by CA membranes, but the uniformity of the latter is better than that of the former.  相似文献   

12.
Plasma electrolytic oxidation (PEO) coatings were formed on 7075 aluminum alloy in silicate-borate based electrolyte with different duty cycles.The physical and chemical properties of the PEO coatings were thoroughly investigated.The wearing and corrosion properties of the coatings were evaluated by wearing experiments and potentiodynamic polarization tests,respectively.The results showed that the micro-hardness of the coatings first increased and then decreased with the increasing duty cycle.As a results,the wearing resistance of the coatings first increased and then decreased with the increasing duty cycle.Composition analysis proved that the coatings were mainly composed of α-Al_2O_3 and γ-Al_2O_3.The presence of wear scars on the worn surface morphology demonstrates that the three-body rolling was the main wear mechanism for coated specimen.The corrosion study showed that the coating formed in the mixed electrolyte with duty cycle of 80% showed the most superior corrosion resistance.  相似文献   

13.
A novel bioactive and bioresorbable asymmetry film was prepared,The PDLLA membrane was activated by 1,6-hexanediamine to obtain a stable positive charge surface.Chondroitin sulfate and chitosan were then deposited on activated PDLLA membrane via layer-by-layer(LBL)electro-static assembly (ESA)technique.The deposition process was monitored by UV-Vis absorbance spectroscopy.The composite membrane was frozen lyophilized to form the asymmetry film and characterized by attenuated total reflectic (ATR)-FT-IR,XPS and SEM.The experimental results show that a stable 1,6-hexanediamme layer on PDLLA substrate based on the aminolysis of the polyester and the layer thickness increase linearly first with the increase of the deposited layers,and then increases slowly due to the layer interpenetration.The test results of ATR-FT- IR and SEM show the asymmetry film is modified uniformly with a dense inner layer and a porous sponge outer layer.  相似文献   

14.
Bioabsorbable chitosan/β-glycerol phosphate (CS/β-GP) composite membranes were fabricated through a relatively PH neutral and mild sol-gel process for guided bone regeneration (GBR).Their structural properties,morphology,and tensile strength were investigated.FTIR and XRD analyses indicated that there were chemical bonds between the CS andβ-GP.SEM analysis revealed that the CS/β-GP composite membranes had a porous structure both at the surface and in sublayers.Even though the incorporation ofβ-GP in the CS matrix decreased the initial tensile strength of the membrane,the CS/β-GP membranes were still fit for GBR application with their tensile strength of roughly 1MPa.The concentration ofβ-GP was proportional to the pore size and thickness but was inversely proportional to the tensile strength of the CS/β-GP membrane.The present findings indicate that,based on its characteristics,the CS/β-GP composite membrane is a potential bioresorbable membrane for use in guided bone regeneration.  相似文献   

15.
Novel organic-inorganic composites were in-situ synthesized by using TriSilanolPhenyl polyhedral oligomeric silsesquioxane(SO-POSS) as fillers and poly(2,5-benzimidazole)(ABPBI) as polymer matrix. The uniformly dispersed 3% SO-POSS particles in ABPBI matrix increased the thermal stability of the composite membranes. It was found that both the water and H_3PO_4 uptakes were increased significantly with the addition of SO-POSS due to the formation of hydrogen bonds between the POSS and H_2O/H_3PO_4, which played a critical role in the improvement of the conductivity of the composite membranes at temperature over 100 ℃. Proton conductivities of H_3PO_4 doped with 3 wt% SO-POSS contained ABPBI membranes increased with the increase of H_3PO_4 absorbance, reaching the maximum proton conductivity of 2.55 × 10~(-3) S·cm~(-1) at 160 ℃, indicating that the ABPBI/SO-POSS composite membrane could be a promising candidate for mid-temperature PEMFCs.  相似文献   

16.
Polyethylene glycol (PEG) membranes with different molecular mass cut-offs were used to treat oil/water emulsion, and the effects of experimental conditions including pressure, temperature and different operating modes on permeate flux and removal rate of chemical oxygen demand (CODcr) were studied. The results show that the permeate flux of ultrafiltration membrane is influenced by pressure and temperature; practical pressure is chosen to be 0.3 - 0.7 MPa for the PEG with molecular mass cut-offs of 8 000 and 0.7 - 1.0 MPa for the PEG with molecular mass cut-offs of 2500 ; and the practical temperature is chosen to be 25 - 32℃. Different operating modes of ultrafiltration also influence the permeate flux and removal rate of CODCr. The ultrafiltration membrane of intermittent cross-flow operating mode is easier to be influenced by blocky polarization and contamination than that of sequential cross-flow operating mode. Removal rate of CODCr in intermittent cross-flow and sequential cross-flow condition can be maintained at about 93%.  相似文献   

17.
Experiments were conducted to investigate the cooling manner of an ultra-thick hot aluminum alloy plate during multistage quenching. Cooling curves and heat flux curves of different rapid quenching flux varied from 23 to 40 L min~(-1) and were analyzed in detail. In this investigation, cooling process was divided into the following four steps:(I) starting step,(II) rapid cooling step,(III) slow cooling step, and(IV) stopping step. Based on the curves, the calculation method for surface transfer coefficient was provided, and the effects of coefficient on surface temperature and quenching flux were discussed. Results showed that the transfer coefficient disagreed with heat flux and that it is a nonlinear function of surface temperature. The highest coefficient was observed not in the rapid cooling step with the largest heat flux but in the slow cooling step with lower heat flux. The coefficient increased with surface temperature ranging from 480 to 150°C, and a coefficient peak appeared in the temperature range of 150–100°C. The coefficient also increased with quenching flux. Finally, a simulation was performed using the finite element method to verify the reliability of the coefficient results, which showed good agreement with the measurement values.  相似文献   

18.
In the present study,nano-sized TiO2/Al2O3 modified PVDF membranes (MM) were fabricated and utilized for anionic polyacrylamide (APAM) separation.The results showed that,compared with PVDF membrane ( O...  相似文献   

19.
Enantioseparation of salbutamol solute was carried out in liquid-supported membrane by using a polyvinylidene fluoride hollow-fiber module. The enantioselective transport of solute was facilitated by combinatorial chiral selectors, which were dissolved in toluene organic solvent. The effects of molar concentration ratios of salbutamol to combinatorial chiral selectors, and the pH value of buffer solution on enantioseparation were investigated. The results show that when the molar concentration ratio is 2 : 1 : 1, the maximum separation factor and enantiomer excess are 1.49 and 19.74%, respectively, and the R-enantiomer flux is more than S-enantiomer; the pH value of buffer solution influences the performances of enantioseparartion obviously, and the appropriate range of pH value is 7.0-7.2.  相似文献   

20.
A series of poly(ethylene oxide)(PEO) membranes with star-like structures for CO_2/H_2 separation were prepared by the photo-polymerization method. The structure of PEO membrane was characterized by Fourier transform infrared spectroscopy(FTIR). The thermal property and inter-segmental distance of polymer chain were investigated by differential scanning calorimetry and wide-angle X-ray diffraction, respectively. The density was determined by hydrostatic weighing method. The gas permeability, solubility and diffusivity of CO_2 and H_2 were investigated in the star-like PEO membranes. The relationship between gas permeation performances and physical properties was also discussed. The membrane exhibits outstanding CO_2 permeability(about 9.7×10~(-11) cm~3(STP) cm/cm~2/s/Pa) and CO_2/H_2 selectivity(about 11) compared with other membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号