首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用固相反应法制备CaO-B2O3玻璃(简称“CB”玻璃)助烧的零膨胀系数β-锂霞石陶瓷。通过差示扫描量热(DSC)、X射线衍射(XRD)、扫描电子显微镜(SEM)手段分别对CB玻璃的热学特性和助烧后的β-锂霞石陶瓷样品的物相与显微形貌进行表征。结果表明, CB玻璃具有良好的助烧效果, 可以显著降低β-锂霞石陶瓷的烧结温度(从1300℃降至1150℃), 并大幅提高陶瓷的相对密度(从93.3%提高到97.4%)。加入CB玻璃助烧剂, β-锂霞石陶瓷致密性显著提高, 内部无微裂纹存在。加入4wt%和6wt% CB玻璃的β-锂霞石陶瓷在室温~200℃范围内具有零膨胀系数, 分别为0.02×10-6/K和0.4×10-6/K。然而, 加入8wt% CB玻璃的β-锂霞石陶瓷样品中产生了具有高正膨胀系数的新物相LiAlO2, 使样品的热膨胀系数提高至3.46×10-6/K。  相似文献   

2.
β-锂霞石负膨胀微晶玻璃的制备技术及结构特征   总被引:8,自引:0,他引:8  
研究了β锂霞石微晶玻璃的制备技术、结构特征及其负膨胀特征。首先采用玻璃结晶法制备β锂霞石负膨胀微晶玻璃材料,然后通过XRD、SEM等测试手段,表征了β锂霞石微晶玻璃材料的结构特征。并讨论β锂霞石负膨胀微晶玻璃的膨胀系数及其与晶相组成和晶化温度及时间的依从关系,使其负膨胀系数在一定范围内连续可调。研究并制备出热膨胀系数可达到为-1.037×10-5/℃的β锂霞石微晶玻璃。  相似文献   

3.
为了研制新型轻质、低膨胀系数的复合材料,以玻璃为基质材料,根据复合材料混合法则,将β-锂霞石、多晶莫来石纤维和玻璃粉按一定比例球磨混合后,经冷等静压压制后,采用高温真空烧结的方法,制备了含锂霞石和莫来石纤维的玻璃基复合材料。通过对其表观形貌、显微结构、维氏硬度、膨胀系数进行测试,重点研究了纤维含量、纤维长径比、烧结温度对复合材料性能致密度、机械性能、膨胀系数的影响。结果表明,当纤维含量为18%(质量分数)时,材料的维氏硬度最高;当纤维含量为10%(质量分数),长径比为31,800℃真空烧结5 h后,复合材料在在150~400℃范围内的平均线膨胀系数为1.67×10~(-6)/K(2×10~(-6)/K),是一种潜在的轻质、低膨胀复合材料。  相似文献   

4.
SiO_2-BaO-Al_2O_3-Cr_2O_3陶瓷保护涂层的制备及性能   总被引:1,自引:0,他引:1  
为提高奥氏体不锈钢抗高温氧化及化学侵蚀能力,确立了以SiO2-Bao-Al2O3-Cr2O3为主要化学组成的氧化物陶瓷涂层体系,并对涂层的制备工艺进行了探讨.涂层制备工艺:研磨后的涂层粉体平均粒径Dsv为1.52μm,95%粉体粒径(D95)小于3.40μm;以水作为分散介质制备涂层料浆,料浆的福特杯黏度为12~16 s;不锈钢基体除油、除锈、喷砂处理使表面洁净、粗化以提高黏附力;调整浸涂过程样品提升速度控制涂层厚度;涂覆样品充分干燥后在空气中1 050 ℃下烧结2~3 min,可获得致密光滑的陶瓷涂层.结果表明:涂层在空气中热震29次、水中热震9次,保持完整,有良好的热稳定性;涂层在空气中1 000℃下50 h连续氧化.增重约为裸样的1/20;氧化动力学曲线呈线性关系;300 h中性盐雾侵蚀无明显变化,腐蚀等级9级,外观评价为A级.  相似文献   

5.
Ba2TiSi2O8(BTS)玻璃陶瓷具有压电性、热释电性和非线性光学性能。采用溶胶凝胶法制备了BTS玻璃陶瓷,利用差热分析仪(DTA)分析了BTS干凝胶在煅烧过程中的化学反应及能量变化;X射线衍射仪(XRD)研究了BTS粉体的物相组成;激光粒度仪分析了BTS粉体的颗粒度;扫描电子显微镜(SEM)表征了BTS玻璃陶瓷样品断面的微观结构。研究结果表明:合成BTS粉体的最佳温度为850℃,所得颗粒的平均粒径为1.73μm。1250℃烧结制得的BTS玻璃陶瓷表现出致密、孔少、均匀的外观性质。  相似文献   

6.
采用Al2O3-硅酸盐玻璃复合体系制备低温烧结玻璃陶瓷,通过TG-DTA、XRD、SEM等分析方法对样品进行表征,随着玻璃含量的增加玻璃陶瓷的烧结温度逐渐降低,在玻璃含量约为50%(质量分数)时玻璃陶瓷的热导率达到最大值2.70W/m·K,此时的玻璃陶瓷具有低的烧结温度(800℃)、高的相对密度(≥95%)、低的电容率(8~10)、低的介电损耗(1.5%~0.7%),有望成为LED封装用基板材料。  相似文献   

7.
采用热压烧结工艺成功制备了一种新的β-锂霞石增强铜基复合材料.利用扫描电镜和透射电镜对复合材料的微观组织进行了分析,并对不同体积分数复合材料的致密性,热膨胀性能和热传导性能进行了测试.结果表明:β-锂霞石颗粒在铜基体中分布均匀,界面清晰,不发生界面反应;体积分数对复合材料致密性、热膨胀系数和热导率有明显影响,当β-锂霞石颗粒体积分数超过40%时,复合材料的致密性有明显下降,热膨胀系数在(9~15.4)×10-6/K,同时热导率在50~170W/m·K.  相似文献   

8.
采用俄歇电子能谱(AES)和二次离子质谱(SIMS)技术对不同条件下制备的 β″-Al_2O_3陶瓷进行表面和深度剖析,将所得结果进行比较后发现,用 AES 进行深度剖析时,电子束在样品表面上形成的电场将促使 β″-Al_2O_3出现钠沉积现象。用 SIMS 技术发现样品表面有一个表面层,其组成与样品主体不同且取决于β″-Al_2O_3烧结时的环境条件。本工作还用扫描电镜(SEM),电子探针(EPMA)和 X 射线能量色散(EDAX)等技术对 β″-Al_2O_3的表面及断面进行了研究。  相似文献   

9.
以金属Al粉、单质Si粉、α-Al_2O_3微粉为主要原料,高温氮化反应制备β-Sialon陶瓷。通过在反应物中分别添加不同含量的Y_2O_3和TiO_2烧结剂,研究分析和对比了Y~(3+)和Ti~(4+)对β-Sialon陶瓷晶相组成、晶格常数、微观结构及烧结性能的影响。采用SEM及EDS对试样的微观形貌进行观察与分析,利用X'Pert Plus软件分析晶相的晶格常数,采用半定量法计算试样晶相组成。结果表明:Y_2O_3和TiO_2可显著降低高温氮化法制备β-Sialon陶瓷试样中β-Sialon相的生成温度。伴随着Y_2O_3和TiO_2的引入,Al_2O_3在Si3N4中的固溶度提高,β-Sialon晶相的生成量增加,晶格常数和晶胞体积增大,烧结性能得到改善。综合对比分析,Y_2O_3和TiO_2均对制备β-Sialon陶瓷具有良好的促烧结作用,用成本较低的TiO_2代替传统的稀土氧化物作为助烧结剂无压烧结制备β-Sialon陶瓷是可行的。  相似文献   

10.
锂霞石是一种硅酸铝锂矿物,多呈圆滑的团块状或星点状嵌布于锂辉石晶体内或晶间空隙及裂缝中。大约在972℃时,天然的α-锂霞石转变为β-锂霞石。β-锂霞石因其结构特点在较宽的温度范围具有负的膨胀系数。而热膨胀系数具有加和性,因此,利用β-锂霞石材料的负膨胀性与其他材料复合,研制具有低膨胀或"零膨胀"的复合材料受到高度重视,并进行了大量研究。本文重点介绍了β-锂霞石复合材料的分类,并对其合成方法进行阐述,最后对其应用进行了展望。  相似文献   

11.
采用高温熔融法制备了Bi2O3-SiO2玻璃及玻璃陶瓷, 测试了样品的近红外光区及可见光区的发射谱、激发谱及荧光寿命。在808 nm波长光的激发下, Bi2O3-SiO2玻璃及玻璃陶瓷中均发现了近红外发光。当Bi2O3含量较低时(30mol%、40mol%、50mol%), 发光中心位于1336 nm(或1300 nm), 为宽带发光; 随Bi2O3含量的增加, 1070 nm左右出现了窄带近红外发光峰, 且逐渐成为最强发光峰, 与此同时, 1336 nm(或1300 nm)的宽带发光转变为窄带发光。1336 nm (或1300 nm)与1070 nm发射峰的荧光寿命及激发谱均存在较大的区别, 初步分析认为这两个发射峰归属于不同的发光中心, 1336 nm(或1300 nm)发射峰源于低价态Bi离子。  相似文献   

12.
利用冰模板法制备一种具有高孔隙率的碳纳米管强化氧化铝(CNTs-Al_2O_3)多孔陶瓷复合材料。采用SEM,XRD及Raman对样品进行表征,研究碳纳米管(CNTs)含量对复合材料微观形貌、性能的影响。结果表明:随着CNTs含量的增大,复合材料的体积密度、孔隙率和抗压强度均发生改变;添加适量的CNTs能促进陶瓷孔壁烧结致密度,提高材料的抗压强度;但加入过量CNTs会导致CNTs团聚,嵌于陶瓷内壁形成微孔,反而降低了材料致密度与抗压强度;当CNTs含量达2.0%(质量分数)时,多孔陶瓷的抗压强度达到最大值4.52MPa,相对纯Al_2O_3多孔陶瓷提高了66%。  相似文献   

13.
为了降低微晶玻璃的熔化温度、改善玻璃的化学稳定性、机械性能和玻璃的熔化质量,在Li2O-Al2O3-SiO2三元玻璃系统中加入5%的B2O3。但加入氧化硼容易产生玻璃分相,生成的主晶相β-石英固溶体就会减少,引起透光性下降。作者以TiO2、ZrO2作为复合晶核剂,通过改变成核温度、成核时间、晶化温度、晶化时间,控制晶体颗粒度大小,制备出了晶粒较小、主晶相为β-石英固溶体的低膨胀透明微晶玻璃,其透过率大于80%,膨胀系数为2.0×10-6/K-1。采用差热分析仪分析了晶化前后玻璃的放热情况,用X射线衍射仪分析了微晶玻璃的主晶相为β-石英固溶体,采用SEM分析了透明微晶玻璃和半透明微晶玻璃的晶体结构。  相似文献   

14.
许惠  宋应华  张杰 《化工新型材料》2019,47(10):163-166
以碳酸锂和锐钛型TiO_2为原料,采用传统高温固相法合成了Li_2TiO_3前驱体。经酸浸脱锂后得到对Li~+具有特殊选择性吸附的吸附剂H_2TiO_3,采用X射线衍射、扫描电镜、吸附动力学及共存金属离子的分配系数等手段对样品的晶相结构和Li~+选择性吸附性能进行了研究。结果表明:煅烧温度对目标材料的结构与性能有一定影响,由700℃煅烧8h制备出的Li_2TiO_3,在0.5mol/L盐酸作用下Li的脱出率为98.82%,Ti的溶损率为0.95%。吸附剂的最大吸附容量达到33.4mg/g,并具有较好的Li~+选择性。  相似文献   

15.
以铜尾矿等尾矿为原料,采用烧结法制备了α-堇青石系微晶玻璃。采用X射线衍射仪、差热扫描量热仪、扫描电子显微镜和荧光表征了样品的结构和性能,并研究了Eu~(3+)在微晶玻璃中的发光性能。结果表明:堇青石微晶玻璃的最佳烧结温度为1450℃,采用二次烧结,晶化温度为1100℃,保温2.5h,样品内部有大量的晶粒状晶体;Eu_2O_3在掺杂浓度0.10%时荧光强度最好,晶化温度为1100℃时荧光强度最强,激发波长为415nm时,发射波长591nm的橙-红光。  相似文献   

16.
霞石微晶玻璃是一种新型的无机非金属功能材料,具有良好的绝缘性。本工作以Na2O-Al2O3-SiO2系统为基础,制备出霞石微晶玻璃,并研究了基玻璃微晶化热处理过程对霞石微晶玻璃试样电阻率的影响,得到了制备高电阻率试样的最佳热处理工艺参数。  相似文献   

17.
采用直流磁控溅射镀膜技术以高纯铝为靶材,氧气为反应气体,在304不锈钢基底上以不同溅射功率(60,90,120,150和180 W)沉积Al_2O_3薄膜。采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对薄膜晶体结构和表面形貌进行分析表征,使用电化学工作站考察Al_2O_3薄膜的耐蚀性能。结果表明:所制备的Al_2O_3薄膜表面平整、均匀致密,并且在(217)面具有较好的择优取向;溅射功率对薄膜耐蚀性有较大影响,随溅射功率增加,耐蚀性先增强后减弱,在功率为150 W时所制备薄膜的耐蚀性能最优。  相似文献   

18.
热膨胀系数是材料的重要参数之一,自然界中,绝大多数物质都具有较高的热膨胀系数,热胀冷缩的情况较为严重,因此,这类物质通常具有较差的抗热冲击性,不能在温度变化巨大的环境下使用。如不均匀的温度分布和大的温度变化会引起航空航天器件结构破坏和电子设备的几何热变形,从而造成信号失真。然而自然界中,也存在少数具有负热膨胀系数的物质。这类材料的体积会随着温度的升高而减小。利用热膨胀系数的加和性,可将具有低热膨胀系数或负热膨胀系数的材料与高热膨胀系数的材料复合,得到热膨胀系数可调的复合材料,可显著提高其抗热震性。负热膨胀材料分为各向同性负热膨胀材料和各向异性负热膨胀材料。各向同性负热膨胀材料主要是ZrV_(2-x)P_xO_7和ZrW_2O_8系列,各向异性负热膨胀材料主要包括β-锂霞石、钙钛矿系列、A_2M_3O_(12)系列、M(CN)_2(M=Zn,Cd)系列、氧化物、沸石系列和金属有机框架结构材料(MOFs)等。其中,β-锂霞石因其具有较大的负热膨胀系数(α=-6.1×10~(-6)K~(-1))、较低的密度(2.67g/cm~3)、良好的抗热震性、介电性能及红外辐射,常被用作调节复合材料热膨胀系数的材料。β-锂霞石可与其他材料复合,制备出具有负热膨胀或接近"零膨胀"的复合材料,极大地提高材料的抗热震性和尺寸稳定性,进而提高材料的使用寿命。因此,β-锂霞石常被用来制备一些低膨胀陶瓷、微晶玻璃、金属基等复合材料,用于电气设备、电子元件、导弹天线罩涂层材料、激光陀螺仪和天文望远镜等领域。同时,由于β-锂霞石的各向异性热膨胀特性,复合材料中存在较多的残余应力从而使其机械强度下降。为了解决这个问题,可在复合材料中继续引入机械强度较高的纤维或晶须来提高其机械强度,形成三相复合的低膨胀、高机械强度的复合材料。这将进一步拓展此复合材料在惯性导弹、光纤陀螺等航空航天中的应用。本文主要综述了β-锂霞石在金属、玻璃以及陶瓷低膨胀两相或三相复合材料领域的研究现状及进展,概述了这几类低膨胀系数复合材料的制备工艺、热学性能、力学性能及应用领域,对β-锂霞石基复合材料未来的发展趋势及应用前景进行了展望。  相似文献   

19.
采用两种不同方法在不锈钢基底上制备出不同形貌的Fe_2O_3阵列薄膜,测试了其对液体的润湿性能。结果表明,Fe_2O_3多级结构阵列薄膜比Fe_2O_3纳米棒阵列薄膜表现出更好的润湿性能。Fe_2O_3多级结构阵列薄膜接触角变小,极性力变大,表面自由能增加。而Fe_2O_3纳米棒阵列薄膜接触角变大,色散力减小,表面自由能降低。与Fe_2O_3多级结构阵列相比,Fe_2O_3纳米棒阵列的纳米棒之间具有更多小的纳米尺寸的缝隙空间,使得较多的空气滞留其中,而空气具有很好的异质性,因此Fe_2O_3纳米棒阵列薄膜的润湿性相对较差。  相似文献   

20.
以BaCO3、H3BO3为原料,经高温熔触及控制热处理,获得了BaO·B2O3透明玻璃陶瓷.利用XRD、SEM等手段研究了该材料的结构特征及表面形貌.结果表明,在玻璃表面得到了含有单一β-BaB2O4(BBO)晶相结构的析晶薄膜层,薄膜表面均匀,单股厚度约2μm,晶粒平均尺寸约0.2μm,且微晶粒沿a轴方向优先生长;析晶优先从玻璃表面开始向内部进行,形成晶化层—玻璃—晶化层的三元“夹心”结构.该玻璃陶瓷具有良好的光学性能,在1.064μm调QNd:YAG强激光作用下观察到了样品倍频信号的产生(SHG).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号