首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
聚合物半导体石墨相氮化碳(g-C_3N_4)具有独特的电子结构和化学性质,是一种新型的非金属功能性材料,在利用太阳能转化清洁能源和化学合成领域受到广泛关注。但由于其本身结构的限制性纯g-C_3N_4光催化效果并不尽人意。而稀土离子掺杂是调节带隙,降低大的层间电阻并增强g-C_3N_4的光催化活性合适且有效的技术。本文通过介绍稀土的独特性质,总结了近几年稀土离子掺杂g-C_3N_4的研究工作,并对该领域的研究方向进行了展望与探讨。  相似文献   

2.
以聚间苯二甲酰间苯二胺(PMIA)为膜材料,石墨相氮化碳(g-C3N4)为添加剂,通过相转化法制备了PMIA/g-C3N4超滤膜。分别探讨了不同添加量的g-C3N4对超滤膜的水通量、分子截留性能等影响。结果表明,与不含gC3N4的超滤膜相比,改性后的超滤膜的结构和性能发生了显著变化,添加一定比例的g-C3N4纳米粒子可以有效增加膜的通量和亲水性,但过量的添加会影响膜的分离性能。研究发现,当添加的g-C3N4的量相对于PMIA的质量分数为5%时,膜的整体性能最佳,此添加量的膜的纯水通量达到了542 L/(m^2·h),截留分子量Mm为133.3×10^3,表面纯水接触角为48.36°,孔隙率为67.10%,裂解温度为360℃。  相似文献   

3.
本文从g-C3N4的制备及应用角度,综述近年来国内外同行在g-C3N4研究中所取得的一些重要进展,尤其是在用作载体方面;并对其未来发展趋势,特别是在能源和环境领域中的应用进行了展望。  相似文献   

4.
艾兵  李思源  刘凡  韩永磊  李德刚 《化学试剂》2019,41(10):1037-1041
采用热聚合法,以三聚氰胺为前驱体合成类石墨相氮化碳(g-C_3N_4)光催化剂。并用同样的方法分别以掺入0. 5 wt%MgCl_2、CaCl_2、BaCl_2的三聚氰胺为前驱体合成M/g-C_3N_4(M=Mg、Ca、Ba)复合光催化剂。使用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、紫外-可见漫反射(UV-Vis DRS)、扫描电子显微镜(SEM)等对所制备的光催化剂进行表征。在可见光照射下,通过光催化降解亚甲基蓝(MB)溶液研究碱土金属的掺杂对g-C_3N_4光催化活性的影响。研究表明,Mg、Ca、Ba等碱土金属的掺杂对g-C_3N_4的光催化活性分别提升了5. 09、3. 66、2. 19倍。  相似文献   

5.
石墨相氮化碳(g-C3N4)作为一种可见光响应的半导体聚合物光催化剂,具有廉价易得、化学稳定性好、无毒无害以及合适的禁带宽度和能带位置等优点,但也存在只能吸收波长小于475nm的光且光生载流子复合严重等问题,需要对其进行改性来提高光催化能力。本文在介绍g-C3N4的结构、特性和制备方法的基础上,着重评述了g-C3N4在形貌调控、半导体复合、元素掺杂、分子掺杂和染料敏化等改性手段方面的研究进展以及在降解有机污染物、分解水制氢、还原CO2和有机合成等方面的应用。最后指出g-C3N4未来的研究方向在于用多种手段共同改性g-C3N4、拓展g-C3N4在光催化领域的应用和深入进行机理研究等方面。  相似文献   

6.
刘梅  张晋波 《山东化工》2023,(18):180-183
光催化技术利用太阳能激发出半导体的氧化还原活性,是一项环境友好型技术。石墨相碳氮碳(g-C3N4)是一种非金属半导体聚合物,它在各类光催化研究中表现出优异的光催化活性。总结了光催化技术在减缓化石能源危机和解决环境污染方面的应用,论述了g-C3N4在各技术中的光催化反应原理,并扼要分析了g-C3N4在光催化领域的发展趋势。  相似文献   

7.
从上世纪九十年代就开始的研究高端材料的热潮,现在仍然在进行中的石墨相氮化碳的研究,它是第一种通过理论计算,结构设计的由人工合成的自然界根本不存在的或者尚未发现的物质。石墨相氮化碳的新功能是目前其他任何材料所不具备的。本文就石墨相氮化碳(g-C3N4)的应用和应用前景进行探讨。  相似文献   

8.
石墨相氮化碳作为一种新型光催化剂,不仅对可见光响应,而且光催化性能良好,可处理难降解有毒有害物质。这里从石墨相氮化碳的合成及改性研究进行了综述。着重阐述了改性方法及国内外研究取得的成果,同时对今后g-C_3N_4的研究重点进行了展望。  相似文献   

9.
利用阳离子取代法制备阳离子掺杂的石墨相氮化碳样品,将共晶熔盐[m(KCl)∶m(Na Cl)∶m(Li Cl)=1∶1∶1]和三聚氰胺按照质量比10∶1的比例悬蒸干燥,同时加入氯化锰溶液使得锰元素的掺杂质量分数分别为0%、0.3%、0.5%、0.7%和1%,在温度520℃锻烧4 h后得到多种元素掺杂的纳米管材料,之后将样品酸处理3 h,去掉Na~+、K~+、Li~+离子,最后将样品放入马弗炉中400℃煅烧2 h,可以去除Cl~+和H~+得到只有锰掺杂的氮化碳材料。该制备方法解决了传统离子掺杂氮化碳材料比表面积小、形貌不可控的问题。同时利用SEM、XRD、BET、UV-Vis、FT-IR和PL对阳离子取代法制备的锰离子掺杂的氮化碳纳米管的形貌和尺寸、孔结构、吸光范围和载流子分离效率等进行表征,并在可见光下对样品进行光催化产氢性能测试。  相似文献   

10.
《云南化工》2017,(9):26-28
石墨相氮化碳(g-C_3N_4)具有稳定的光学性质、化学性质等优点,但也存在一些缺点。因此,为了更好的利用石墨相氮化碳,改变石墨相氮化碳应用领域的探究是非常重要的。利用循环伏安法在过氧化氢溶液中对不同的石墨相氮化碳薄膜电极进行了氧化还原反应测试,进而研究了电极上发生的电化学反应的可逆性及其动力学特征,从而判断电极电催化活性的高低。研究表明,该修饰电极对过氧化氢具有电催化还原作用,铂基石墨相氮化碳的催化效果比纯的电催化优越。  相似文献   

11.
类石墨相氮化碳(g-C_3N_4)具有类石墨结构,具有活性中心点多、热稳定及化学稳定性好、环境友好等特点,在环境、能源和化工等领域都有较好的应用前景。然而,因为比表面积小、禁带宽度大、电子-空穴对易复合、电子传输速度慢,限制了g-C_3N_4催化剂的应用。本文针对提高g-C_3N_4催化剂活性的复合改性研究,综述了近年来国内外在g-C_3N_4/碳材料复合催化剂方面的重要研究进展。  相似文献   

12.
综述了类石墨相氮化碳的发展历程以及近年来的最新研究进展,分析了类石墨相氮化碳的合成方法及作用机理,对类石墨相氮化碳在应用过程中存在的缺陷以及改性手段进行了总结,并对类石墨相氮化碳的发展趋势进行了展望。  相似文献   

13.
类石墨相氮化碳(g-C_3N_4)是一种可见光响应的有机聚合物半导体催化材料,因比表面积小和吸附性能差等缺点限制了其实际应用。对g-C_3N_4的各种掺杂、复合、负载等改性研究一直是材料化学研究领域的热点之一,分类总结了近几年国内外文献报道的关于g-C_3N_4多孔材料负载、与半导体材料形成同型或异型异质结复合物等研究,以探讨g-C_3N_4今后的改性研究方向。  相似文献   

14.
从发展半导体可见光催化活性材料的角度,对近年来国内外石墨相氮化碳改性技术进展和成果进行分类总结,包括掺杂改性技术、半导体复合改性技术、比表面积调控改性技术等方面;并且阐述了改性氮化碳的光催化机理,最后展望了石墨相氮化碳改性技术的未来发展趋势。  相似文献   

15.
16.
以尿素、磷酸氢二铵为原料,制备多嗪类磷系阻燃剂(P-C3N4)。将P-C3N4与聚磷酸铵(APP)复合后添加到聚己二酸/对苯二甲酸丁二酯(PBAT)中,制备阻燃PBAT复合材料。通过红外表征(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱分析(EDS)、热重分析(TG)及锥形量热分析表征阻燃剂的微观结构、热稳定性及复合材料的阻燃性能。结果表明:使用热聚合法在不破坏石墨相氮化碳(g-C3N4)结构的条件下合成P-C3N4,当磷元素添加量为30%时,P30-C3N4的残炭率提高25.6%,阻燃PBAT材料的PHRR和THR分别降低25.3%和26.9%,显著提升复合材料的阻燃性能。  相似文献   

17.
利用可见光催化剂分解水产氢是目前清洁能源研究的热点方向。在众多光催化剂中,石墨相氮化碳由于具有良好的光催化性能而成为研究热点。本文简单概述了石墨相氮化碳基光催化剂的结构调控策略的相关研究。  相似文献   

18.
张娅  王锐  文思斯  周燚洒  薛健  王海辉 《化工学报》2021,72(12):6188-6202
石墨相氮化碳(g-C3N4)纳米片由于具有本征孔、高孔密度、高稳定性、高力学强度、大比表面积、化学环境可调节等特性,在气体分离、渗透汽化、脱盐等膜分离工艺中具有独特的优势,从而引起了研究人员的广泛关注。本文介绍了g-C3N4纳米片的结构和性质,总结了g-C3N4纳米片的制备方法,阐述了不同形式的g-C3N4纳米片基分离膜,讨论了g-C3N4纳米片膜在分离中的应用,提出了g-C3N4纳米片膜的存在的问题和未来的发展趋势。  相似文献   

19.
石墨相氮化碳具有独特的电子能带结构和优异的化学稳定性,作为一种不含金属成分的新型可见光光催化剂,在光催化领域有着广泛的应用前景。介绍了近年来石墨相氮化碳的研究现状,重点探讨其合成方法、结构特性和其相关的衍生物以及在光催化中的应用。  相似文献   

20.
综述了近年来改性石墨相氮化碳(g-C_3N_4)在光化学,电化学、有机合成和环境保护等方面催化性能的研究进展,归纳总结了改性修饰方式、反应条件等对g-C_3N_4催化性能的影响,并对今后g-C_3N_4催化方面的发展趋势和应用前景做出展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号