首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
Cotton fabric has been made electro‐conductive by electroless deposition of silver from its salt solution. Preparation process involved radical graft polymerization of glycidyl methacrylate monomer on plain woven cotton fabric using 10 kGy dose of electron beam irradiation, and then hydrazination of the epoxy ring of the monomer to introduce reducing agents into the fibre chemical structure. These reducing agents are sites for metal particle deposition. The chemical modifications were characterized by infrared spectroscopic studies. From X‐ray diffraction pattern analysis, the average size of these deposited silver metallic particles is 41 nm. These are observed as heterogeneous deposition on the fibre surface in scanning electron images. From thermogravimetric analysis, around 7.5% of the metal plated fabric weight is silver. The deposited silver nanoparticles make a conductive pathway through contact network, and this network brings a drop in average value of surface resistivity of the cotton fabric from 109 Ω/sq to 3.63 Ω/sq for the metallised fabric. Such prepared electro‐conductive fabric showed very good wash durability of electrical conductivity up to 15 washing cycles when carried out as per ISO‐105‐C10:2006 (E) test no. A (1) standard, indicating firm adherence of silver nanoparticles to the fabric surface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44576.  相似文献   

2.
A novel cationic fluorinated polyacrylate emulsion (CFBDH) was prepared by polymerization of dodecafluoroheptyl methacrylate (DFMA) with butyl acrylate (BA), dimethylaminoethyl methacrylate (DM), and 2-hydroxypropyl acrylate (HpA) via seeded emulsion polymerization. Chemical structure, particle morphology, glass transition temperature, and thermal property of resultant CFBDH were characterized by FTIR, 1H-NMR, TEM, DSC, and TGA, respectively. The as-synthesized product was utilized to treat the clean glass sheet and cotton fabric substrates, then morphology, components, hydrophobicity, and other performances of films on those substrates were investigated by SEM, AFM, XPS, and contact angle meter, etc. Results show that the target product possesses anticipative structure and its latex particles have uniform spherical core-shell structure with an average diameter of 126 nm. The core-shell CFBDH latex film thus has two Tg and its thermal property has been improved due to the introduction of fluorine-containing acrylate monomer. The CFBDH film on cotton fabric surface seems to be smooth compared to the blank by SEM. However, the CFBDH film on silicon-wafer is inhomogeneous and has many low or high peaks. At 2 nm data scale and in 1 μm2 scanning field, the root mean square roughness of CFBDH film reaches to 0.205 nm. XPS analysis indicates the perfluoroalkyl groups have the tendency to enrich at the film-air interface. In addition, CFBDH can provide good hydrophobicity for the treated fabric and do not influence whiteness of the treated fabric indeed. However it will make the treated fabric slightly stiff at high doses. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
In this study, cotton fabric was successfully modified to have an antibacterial property through use of the sol–gel process. Dodecanethiol‐capped silver nanoparticles, which have powerful antibacterial activity, were incorporated in silica sol. The starting materials were silver nitrate, tetraoctylammonium bromide, sodium borohydride, chloroform, 1‐dodecanethiol, ethanol, tetraethylorthosilicate, and water. The cotton fabric was padded with dodecanethiol‐capped silver nanoparticle–doped sol, dried at 60°C, and cured at 150°C. Scanning electron microscopy showed a uniform and continuous layer of doped sol on the fiber surface. The antibacterial effects of the treated cotton fabric against Escherichia coli were examined and found to be excellent. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101:2938–2943, 2006  相似文献   

4.
In the present study, chitosan had been utilized as a “green” stabilizing agent for the synthesis of spherical silver nanoparticles in the range of 5–30 nm depending on the percentage of chitosan used (0.1, 0.5, 1.0 and 2.0 wt%) under γ-irradiation. X-ray diffractometer identified the nanoparticles as pure silver having face-centered cubic phase. Ultraviolet–visible spectra exhibited the influence of γ-irradiation total absorbed dose and chitosan concentration on the yield of silver nanoparticles. The antibacterial properties of the silver nanoparticles were tested against Methicillin-resistant Staphylococcus aureus (MRSA) (gram-positive) and Aeromonas hydrophila (gram-negative) bacteria. This work provides a simple and “green” method for the synthesis of highly stable silver nanoparticles in aqueous solution with good antibacterial property.  相似文献   

5.
Cotton fabric with excellent antibacterial durability was obtained when treated with chitosan‐containing core‐shell particles without any chemical binders. These amphiphilic nanosized particles with antibacterial chitosan shells covalently grafted onto polymer cores were prepared via a surfactant‐free emulsion copolymerization in aqueous chitosan. Herein, two core‐shell particles, one with poly(n‐butyl acrylate) soft core and another with crosslinked poly(N‐isopropylamide) hard core, were synthesized and applied to cotton fabric by a conventional pad‐dry‐cure process. Antimicrobial activity was evaluated quantitatively using a Shake Flask Method in which the reduction of the number of Staphylococcus aureus cells was counted. The results showed that treated fabric had an excellent antibacterial property with bacterial reduction higher than 99%. The antibacterial activity maintained at over 90% reduction level even after 50 times of home laundering. The fabric surface morphology as well as the effect of latex particles with different core flexibilities on fabric hand, air permeability, break tensile strength, and elongation was investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1787–1793, 2006  相似文献   

6.
The study of silicone nano‐emulsions and softeners to alter physical properties of undyed cotton fabric has recently gained a substantial interest. However, systematic investigation of silicon nano‐emulsion softeners on dyed cotton fabric has not so far been conducted. This paper deals with the application of silicone nano‐, micro‐, and macro‐emulsion softeners, and combinations of nano/micro and nano/macro, on dyed cotton fabric. We report the effect of silicon nano/micro‐ and nano/macro‐emulsion softeners on color yield and physical characteristics of dyed cotton fabric. All bleached fabrics were dyed with CI Reactive Black 5 and then treated with known concentrations of silicone softeners by the pad‐dry method. The silicone nano‐emulsion was combined with micro‐ and macro‐emulsion softeners using blending ratios of nano/micro (1:1) and nano/macro (1:1). Treated fabrics were compared in terms of physical properties such as fabric handling, wrinkle recovery angle, bending length, abrasion resistance and tensile strength. The color changes were evaluated by color yield (K/S) values and total color difference (ΔEcmc). The results revealed that the silicon nano‐emulsion had better physical properties than micro‐, macro‐ and combination nano/micro‐ and nano/macro‐emulsion softeners. Among all treated samples, nano‐emulsion softeners showed better ΔEcmc values. Scanning electron microscopy analysis suggests that the fiber morphology of treated fabrics was very smooth and uniform.  相似文献   

7.
In this study, a chitosan nanoparticle dispersion solution as a novel multifunctional agent was developed to modify Antheraea pernyi silk. An ionization gelation methodology with chitosan and sodium tripolyphosphate (STPP) was used to prepare the chitosan nanoparticle solution, and then, Fourier transform infrared spectra, laser particle size analysis, and transmission electron microscopy (TEM) were used to characterize the structure and size distribution of the chitosan nanoparticles. The peaks at 3390.7, 1633.7, 1538.2, and 1258.1 cm−1 revealed the reaction between the chitosan and STPP molecules in the chitosan nanoparticles. The average size of the nanoparticles in the aqueous dispersion solution was approximately 20 nm. TEM images clearly showed the round spherical morphology and the distribution of the particles in the solid state. The obtained chitosan nanoparticle dispersion solution was then applied to treat silk filaments and fabric. The results indicate that the surface of the chitosan‐nanoparticle‐treated A. pernyi silk fiber was rougher than that of the chitosan‐treated and untreated ones, and a higher specific surface was achieved. In addition, the antibacterial activity, breaking strength, and wrinkle‐resistance properties of the chitosan‐nanoparticle‐treated A. pernyi silk fabric were also enhanced. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Delivery and sustained release of toothpaste actives is an important but unexplored area. In this work, chitosan nanoparticles were prepared by a water‐in‐oil emulsion/glutaraldehyde crosslinking method. The typical number average diameter of chitosan and toothpaste active (cetylpyridiniumchloride and NaF) nanoparticles was within the range of 100–500 nm. The particles increased their size at higher pH value. The morphology, adherence, and stability of these nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and X‐ray photoelectron spectroscopy. The size of the chitosan/NaF nanoparticles was doubled after they were stored at 4°C for 20 days, and then kept constant till 251 days, the examined time so far. These particles showed good stability in toothpaste lixivium after incubated at 60°C for 30 days too. By contrast, the chitosan/cetylpyridiniumchloride nanoparticles were easy to form floccules in the toothpaste lixivium. The loaded toothpaste actives showed a sustained released behavior for at least 10 h. All the particles could adhere onto the tooth analogs such as hydroxyapatite discs and glass slides in a simulated brushing and rinsing process. In vitro cell culture did not find any cytotoxicity of the as‐prepared chitosan nanoparticles. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
Green chemical method could be a promising route to achieve large scale synthesis of nanostructures for biomedical applications. Here, we describe a green chemical synthesis of silver nanoparticles (Ag NPs) on chitosan‐based electrospun nanofibers using Eucalyptus leaf extract. A series of silver salt (AgNO3) amounts were added to a certain composition of chitosan/polyethylene oxide aqueous acetic acid solution. The solutions were then electrospun to obtain nanofibrous mats and then, morphology and size of nanofibers were analyzed by scanning electron microscopy (SEM). Incubation of AgNO3‐containing mats into Eucalyptus leaf extract led to the formation of Ag NP clusters with average diameter of 91 ± 24 nm, depicted by SEM and transmission electron microscopy. Surface enhanced Raman spectroscopy also confirmed formation of Ag NPs on the nanofibers. The mats also showed antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria with bigger inhibition zone for extract‐exposed mats against S. aureus. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42133.  相似文献   

10.
Polyvinyl alcohol/chitosan/silver (PVA/CS/Ag) nanocomposite membranes were synthesized by γ-radiation with promising antimicrobial and biomedical applications. The nanocomposite membranes were prepared by mixing PVA and CS solutions with different copolymer compositions in the presence of silver nitrate (AgNO3) and glutaraldehyde as cross-linker, followed by in situ reduction with γ-radiation at different doses. The nanocomposite membranes were characterized by ultraviolet spectroscopy (UV), Fourier transform infrared, X-ray diffraction (XRD) and transmission electron microscopy (TEM). UV studies showed a strong peak around λ max at 430 nm due to surface plasmon resonance of silver nanoparticles formed during irradiation. As the irradiation dose increased from 25 to 75 kGy, the plasmon band is shifted from 430 to 418 nm with high intensity, indicating the formation of smaller particles. TEM investigation showed uniform distribution of silver nanoparticles (AgNPs) in the membranes with mean diameter of 32–19 nm. XRD results confirmed that the mean diameter of AgNPs estimated from the Debye–Scherrer formula was in the range of 27.5–12.8 nm which confirms the TEM results. The PVA/CS/Ag nanocomposite membranes exhibited good antibacterial activity and were found to cause significant reduction in microbial growth. The nanocomposite membranes showed non-thrombogenicity effect and slightly haemolytic potential, suggesting their promising use in biomedical applications.  相似文献   

11.
Silver has been known to show antibacterial activity. Recently, silver nanoparticles have been become widely used in diverse applications. In a previous work by the authors, a small nanoparticle generator that uses a ceramic heater with a local heating area was developed. The performance of the device was evaluated in terms of the silver nanoparticles it generated. In the present article, a feasibility study regarding the inactivation of bacteria bioaerosols by the developed small silver nanoparticle generator is conducted to assess its possible use for the active control of indoor bioaerosols. To simulate the inactivation of bacteria on a surface exposed to air, an antibacterial test system consisting of an airborne silver nanoparticle generator, a bacteria bioaerosol generator, and two airborne bacteria samplers with membrane filters was utilized. Spherical polydisperse silver nanoparticles with mode diameters in the range of 10 27 nm were generated. Their size distribution was changed according the applied voltage and the airflow rate. S. epidermidis gram-positive bacteria having mode diameter of approximately 800 nm were aerosolized using a single-jet Collison nebulizer in an effort to verify the antibacterial activity of the silver nanoparticles in an air environment. With variables of 100 V and 6 L/min, the viability of S. epidermidis bacteria exposed to silver nanoparticles was lower than 5% for an exposure time ranging from 1 9 min. The viability curve was well represented in terms of the total surface area of the exposed silver nanoparticles. From the results, it was concluded that the developed small airborne silver nanoparticle generator has considerable potential as an active antimicrobial device for use in indoor air applications.  相似文献   

12.
Silver nanoparticles were prepared from a polyacrylonitrile (PAN)/N,N‐dimethylformamide solution of silver nitrate (0.05–0.5 wt %) with light treatment (xenon arc) to reduce Ag+ ions into Ag0. The formation of silver nanoparticles in the PAN solution and the effect of treatment time on the numbers of silver nanoparticles, their average diameter and size distribution were investigated by UV–visible spectroscopy. In addition, the average size of silver nanoparticles and their shapes in colloidal solution were determined by transmission electron microscopy images and found to be on the order of 10 nm. The resulting solution was electrospun into PAN nanofibers. An increase in the salt concentration led to decreases in the nanofiber diameter and bead numbers (determined by scanning electron microscopy images) and an increase in the crystallinity (confirmed by X‐ray diffraction patterns). A continuous rate of silver release from the nanofiber web was monitored by the atomic absorption technique. These nanofibers showed strong antibacterial activity against Pseudomonas aeruginosa. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
通过无皂乳液聚合技术合成了POSS/有机硅改性聚丙烯酸酯无氟防水剂,并将其应用于棉织物整理。考察了软硬单体配比对乳液、乳胶膜及其应用性能的影响。利用傅里叶红外光谱(FT-IR)和傅里叶红外光谱(DLS)对聚丙烯酸酯的结构及乳胶粒的粒径大小进行了表征,利用伺服材料多功能高低温控制试验机、柔软度仪、SEM对整理织物的应用性能及表面形貌进行了表征。结果表明:当m(BA):m(MMA)为6:4时,单体的转化率最大为96.97%,乳液的凝胶率为0.14%,乳胶粒的粒径最小为104.8 nm,乳胶膜对水的接触角最大可达114.3?,并具有优异的耐水性。整理棉织物表现出优异的力学性能和良好的柔软度,其对水的接触角可达161?。SEM结果表明棉织物纤维表面存在功能化POSS纳米颗粒。无氟防水剂赋予棉织物纤维表面低的的表面能和一定的粗糙结构,从而使整理棉织物表现出超疏水性能。  相似文献   

14.
Sulfonated melamine‐formaldehyde (SMF) resin was successfully synthesized with a mixture of formaldehyde, melamine, and NaHSO3 in an aqueous solution. Then the SMF was used as the blowing agent to combine with chitosan and phytic acid for fabricating the intumescent flame retardant coating on the surface of the cotton fabric by layer‐by‐layer (LbL) self‐assembled technology. As characterized by X‐ray photoelectron spectroscopy, scanning electron microscopy, and attenuated total reflection Fourier transform infrared spectroscopy, the (chitosan/SMF + phytic acid)n coating was successfully deposited on the surfaces of cotton fibers. Thermogravimetric analysis results exhibited that the thermal stabilities of coated cotton fabrics under nitrogen and air atmosphere were enhanced at temperatures ranging from 400 to 700 °C compared with pure cotton fabric. At 700 °C, the char residues of cotton‐5BL and cotton‐10BL under a nitrogen atmosphere were improved 25.9 and 32 wt % than that of pure cotton fabric, respectively. In the vertical flame test, the self‐extinguishing could be obtained for the cotton‐10BL sample. This work first utilized SMF as negative polyelectrolyte to fabricate intumescent flame retardant coating by LbL self‐assembled technology on cotton fabric to strengthen its thermal stability and flame resistance. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46583.  相似文献   

15.
Silver nanoparticles were coated onto cotton fabrics with 3‐mercaptopropyltrimethoxysilane (3‐MPTMS). The coating process was accomplished by soaking the cotton fabrics into silver colloid/3‐MPTMS solution at 43°C for 90 min. The coated fabrics were characterized by scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). SEM images showed a layer of silver nanoparticles and 3‐MPTMS on cotton. The XPS data showed that distinguishable binding energy peaks of Ag 3d, Si 2p, Si 2s, S 2p were 368/374, 102, 153, and 162 eV, respectively, which confirms the existence of silver and 3‐MPTMS on cotton fabrics. The treated cotton fabrics showed prominent antimicrobial effectiveness against Staphylococcus aureus (ATCC 6538) and Klebsiella pneumonia (ATCC 4352). Furthermore, the laundry test showed that 66% of silver nanoparticles were retained after five washing cycles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
In this work, the preparation and characterization of a novel multifunctional collagen–chitosan material containing silver nanoparticles and nonsteroid anti‐inflammatory drug ibuprofen is described. As a starting material, the commercially available collagen–chitosan scaffold was used. Drug‐loading procedure was performed via supercritical CO2‐assisted impregnation technique. Silver nanoparticles were prepared via metal vapor synthesis and introduced into the composite biopolymer matrix. An analysis of the small‐angle X‐ray scattering profiles revealed that silver nanoparticles are characterized by having a logarithmic normal size distribution with the maximum at 25 nm. The average size of particles determined from the broadening of diffraction peaks is in a good agreement with this result. The surface of the materials was characterized by X‐ray photoelectron spectroscopy. The in vitro release kinetics of ibuprofen in phosphate buffer solution with pH = 7.4 from prepared materials was studied. The drug release to solution is governed by Fickian diffusion and can be described within the Ritger–Peppas model. Introduction of silver nanoparticles has no effect on the diffusion mechanism. The as‐prepared materials are promising for the medical applications such as dressings for treatments of infected wounds and infection preventing. These materials can act as a matrix for transdermal drug administration. POLYM. ENG. SCI., 59:2479–2487, 2019. © 2019 Society of Plastics Engineers  相似文献   

17.
A nanocomposite reservoir‐type hydrogel dressing of poly vinyl alcohol (PVA) was fabricated by a freeze–thaw method and loaded with silver‐nanoparticle‐coated chitosan wafers (Ag–CHWs). The Ag–CHWs were synthesized by a sonication technique with silver nitrate (AgNO3) and chitosan powder. Scanning electron microscopy images showed silver nanoparticles (AgNPs) with a size range of 10 ± 4 nm on the surface of the chitosan wafers, and the antibacterial efficacy (minimum inhibitory concentration) of the Ag–CHWs was measured against Pseudomonas aeruginosa (32 µg/mL), Staphylococcus aureus, (30 µg/mL) and Escherichia coli (32 µg/mL). The antimicrobial PVA hydrogel showed an improved tensile strength (~0.28 MPa) and gel content (~92%) in comparison with the blank hydrogels. Full‐thickness‐excision wound studies of the nanocomposite dressing on Wistar rats revealed enhanced wound contraction, improved inflammation response, re‐epithelization rate, neoangiogenesis, and granulation tissue formation in comparison to the control group. A flexible, biocompatible, nanocomposite reservoir dressing not only established the chitosan as a stabilizer but also proved the efficacious and safe utility of AgNPs toward chronic wound management. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43472.  相似文献   

18.
Poly(vinylidene fluoride) (PVDF) nanofibrous mats containing silver nanoparticles were prepared by electrospinning. The diameter of the nanofibers ranged between 100 and 300 nm, as revealed by scanning electron microscopy. The silver nanoparticles were dispersed, but some aggregation was observed with transmission electron microscopy. The content of silver nanoparticles incorporated into the PVDF nanofibrous mats was determined by inductively coupled plasma and X‐ray photoelectron spectroscopy. The antibacterial activities of the samples were evaluated with the colony‐counting method against Staphylococcus aureus (Gram‐positive) and Klebsiella pneumoniae (Gram‐negative) bacteria. The results indicate that the PVDF nanofibrous mats containing silver nanoparticles showed good antibacterial activity compared to the PVDF nanofiber control. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Superhydrophobic coating was developed on cotton fabric in this article using a dodecafluoroheptyl‐containing polyacrylate (DFPA) and nanosilica. Film morphology of DFPA on cotton fibers/fabrics and chemical compositions of the treated cotton fabric were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X‐ray photoelectron spectroscopy (XPS), respectively. DFPA could form a relatively even film on the cotton fabric/fiber under SEM observation; however, it presented a rough and microphase‐separated pattern under AFM observation. There were many mountain‐like protuberances. The height of the protuberances and the root mean square roughness (Rms) of the film reached about 20–50 nm and 12.511 nm in 2 × 2‐μm2 scanning field (as the scale data was 100 nm). XPS analysis indicated that the perfluoroalkyl groups had the tendency to enrich at the film–air interface. DFPA could make the treated cotton fabric with a water contact angle (WCA) at about 138.5°. Cotton fabric was previously roughened using a 1 wt % silica sol with an average particle size of 20–30 nm and then finished by DFPA; hydrophobicity of the resultant cotton fabric was strongly improved, and WCA could reach 153.6°. The color of this superhydrophobic fabric would not be influenced, but its softness decreased compared to untreated fabric. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
该文以N-β-氨乙基-γ-氨丙基聚二甲基硅氧烷(ASO-1)、环氧氯丙烷、磷酸三丁酯为原料合成了阻燃型磷酸酯聚硅氧烷(PPSO),经红外光谱(IR)和核磁共振氢谱(1HNMR)证实了产物及中间体的化学结构,将PPSO进行乳化得到了透明乳液(PPSE),用马尔文纳米粒度仪及Zeta电位仪测出乳液平均粒径为62.5 nm,Zeta电位+53.71 mV.将所得硅乳应用于棉织物,探讨了阻燃剂用量对整理后织物性能的影响.结果表明,整理后的织物具有了阻燃性,最佳阻燃剂用量为200 g?L-1.为了进一步解释纤维阻燃的机理,通过热重分析研究了织物的热裂解过程,结果表明,阻燃剂对纤维起到了脱水、炭化作用,提高了剩炭率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号