首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为改善聚偏氟乙烯(PVDF)基复合材料界面相容性,提高其电性能,利用聚多巴胺(PDA)成功包覆了纳米钛酸钡(BaTiO3),并引入纳米Ag离子制备出具有核-壳结构的Ag镶嵌BaTiO3@PDA-Ag颗粒。以介电聚合物聚偏氟乙烯-六氟丙烯(P(VDF-HFP))为基体,采用溶液流延法制备了BaTiO3@PDA-Ag/P(VDF-HFP)复合材料厚膜。利用FTIR和XPS验证了BaTiO3@PDA-Ag/P(VDF-HFP)复合材料结构和形貌,并用宽频介电频谱仪和铁电测试仪分别比较了PDA包覆前后的不同BaTiO3含量的BaTiO3@PDA-Ag/P(VDF-HFP)复合膜在低电场下的介电性能和高电场下的电极化性能。结果表明,BaTiO3@PDA-Ag质量分数为20wt%的BaTiO3@PDA-Ag/P(VDF-HFP)复合膜在10 Hz下介电常数(εr)达到了25,介电损耗(tanδ)仅为0.1,在175 M·Vm-1电场下电极化强度(Dm)为6.2 μC·cm-2,200 M·Vm-1时储能密度(Ue)达到了6.9 J·cm-3,高于其它界面未处理复合膜。以上结果可为此类介电复合材料界面结构处理和电性能研究提供参考。   相似文献   

2.
为了加速新能源电子器件向微型化和集成化的方向发展,提高电子器件内部介电复合材料的性能至为重要,介电复合材料的介电性能和储能性能直接影响电子器件的质量,如何提高介电复合材料的介电性能和储能性能等引起了研究者们的广泛关注。以聚偏氟乙烯(PVDF)为基体,碳化硅纳米线(SiCNWs)和核壳结构碳化硅纳米线@二氧化硅(SiCNWs@SiO2)为填料,通过溶液共混相转换法及热压工艺制备出一系列的SiCNWs/PVDF二元复合材料和SiCNWs@SiO2/PVDF复合材料。探究介电纳米填料的表面修饰对PVDF基复合材料的微观结构、宏观介电性能和储能性能等的影响。实验结果表明,硅烷偶联剂KH550成功改性SiCNWs;通过一步法热氧化工艺成功制备出具有典型核壳结构的SiCNWs@SiO2纳米线,SiO2壳层的厚度随着SiCNWs热氧化时间的延长而增大,当SiCNWs热氧化时间为10 h,SiO2壳层的厚度为6.5 nm;采用相转换法和热压处理成功制备一系列的SiCNWs/PVDF二元复合材料...  相似文献   

3.
用水热法合成了不同长径比的钛酸钡纳米线(BaTiO3 nanowires (BTN)),用聚乙烯吡咯烷酮(PVP)调节其表面化学能和静电力(标记为P-BTN)。将P-BTN加入聚间苯二甲酰间苯二胺(PMIA)基体中制备出P-BTN含量(质量分数)为10%的介电复合材料P-BTN/PMIA。研究了合成温度对BTN长径比的影响、P-BTN对P-BTN/PMIA复合材料介电性能和电学性能的影响以及P-BTN/PMIA复合材料在不同温度下的介电性能和电学性能。结果表明:随着BTN合成温度的提高其长径比明显增大,从130℃时的7.2增大到250℃时的46;随着PMIA复合材料中P-BTN长径比的增大其介电常数从6.6增大到9.8,其介电损耗在整个频率范围内小于0.025并保持了良好的绝缘性能;在-20℃-200℃复合材料P-BTN-250-10介电常数和介电损耗保持稳定。高长径比的BTN更利于提高耐高温聚合物基复合材料的介电常数,进而提高其储能密度。  相似文献   

4.
采用固相法制备(1-x)BaTiO3-xZnNb2O6 (x=0.5mol%, 1mol%, 1.5mol%, 2mol%, 3mol%, 4mol%) (简称BTZN)陶瓷, 研究了BTZN陶瓷的烧结温度、结构、介电性能和铁电性能。BTZN陶瓷烧结温度随着ZnNb2O6含量增加逐渐降低。XRD结果表明当ZnNb2O6含量达到3mol%时出现第二相Ba2Ti5O12。介电测试结果表明随ZnNb2O6含量的增加, BTZN陶瓷介电常数逐渐减小, 而介电常数的频率稳定性逐渐增强。介电温谱表明所有BTZN陶瓷均符合X8R电容器标准。BTZN陶瓷的极化强度值随着ZnNb2O6含量的增加逐渐降低。当x=4mol%时, BTZN陶瓷获得240 kV/cm的击穿电场和1.22 J/cm 3的可释放能量密度。  相似文献   

5.
本研究采用BiScO3组分对固相烧结工艺制备的(1-x)(Bi0.5Na0.5)0.935Ba0.065TiO3-xBiScO3(BNBT-xBS)无铅陶瓷进行改性, 考察了BiScO3掺杂含量对陶瓷的微观结构、储能、场致应变和介电等性能的影响。结果表明: 随着BiScO3掺杂含量的增加, BNBT-xBS陶瓷的相结构由三方相与四方相共存演变为伪立方相, 无杂相形成, 且平均晶粒尺寸略有增大; BiScO3组分的引入破坏了BNBT陶瓷铁电畴的长程有序, 表现出弱极化, 且伴随有铁电相到弛豫铁电相的相变过程。BiScO3组分提高了储能和应变性能, 在70 kV/cm电场下其最大储能密度为0.46 J/cm3, 电致应变达到0.25%。介电常数随着掺杂含量的增加逐渐降低, 其介电行为也表明陶瓷具有弛豫铁电体特征; BNBT-xBS陶瓷表现出负温度系数效应, 且在450℃以下具有较好的绝缘性。  相似文献   

6.
以15wt%十六烷基三甲基溴化铵改性碳化硅晶须(CTAB-SiCw)和KH550改性纳米BaTiO3(BT)为填料,聚偏氟乙烯(PVDF)为成膜物质,通过溶液流延法制备了BT-SiCw/PVDF三元复合薄膜,利用FTIR、XRD、SEM和LCR介电温谱仪-高温测试系统联用装置对产物进行结构表征和介电性能测试。结果表明:KH550可以成功改性BT粒子且不会改变BT晶体结构,SiCw和BT能够较好地分散在PVDF基体中;随着BT引入量的增加,复合薄膜的介电常数先增加后减小,其中当引入10wt%BT时介电性能最优,即频率f=500 Hz、介电常数εrmax=33、介电损耗tanδmax=0.154。随着温度的升高,该试样的介电常数和介电损耗也逐渐增加,并在120℃达到最大值(f=500 Hz、εrmax=110、tanδmax=1.3)。结果对于研究具有高介电常数的三元复合电介质材料为在埋入式电容器中获得应用提供了一种策略。   相似文献   

7.
Al2O3含量对Al2O3/LiTaO3复合陶瓷介电性能的影响   总被引:1,自引:0,他引:1  
采用热压烧结法制备了Al2O3/LiTaO3 (ALT) 陶瓷复合材料, 研究了Al2O3不同体积含量(5vol%、10vol%、15vol%和20vol%)对LiTaO3压电陶瓷介电性能的影响. 结果表明:随着频率的增加, 不同Al2O3含量的ALT陶瓷复合材料的介电常数和介电损耗均降低, 但降低的幅度不同. 少量Al2O3(5vol%)的添加既能增大材料的介电常数同时又降低了材料的介电损耗, 但是随着Al2O3含量的继续增加, ALT陶瓷复合材料的介电常数和介电损耗都增大, 其居里温度先升高后降低. Al2O3作为第二相不但能促进LiTaO3陶瓷烧结致密,而且对ALT陶瓷复合材料的介电性能也有提高.  相似文献   

8.
以采用水热法制备的BaTiO3粉体作为原料, 利用普通烧结法和两步烧结法制备出晶粒尺寸为0.25~10.15 μm的BaTiO3陶瓷, 研究了晶粒尺寸效应对BaTiO3陶瓷的介电、压电以及铁电性能的影响。结果表明: BaTiO3陶瓷的四方相含量随着陶瓷晶粒尺寸的增大而增加; 当晶粒尺寸在1 μm以上时, 室温相对介电常数(ε° )和压电系数(d33)随着晶粒尺寸的减小而增大, 并在晶粒尺寸为1.12 μm时分别达到最大值5628和279 pC/N, 然后两者随着晶粒尺寸的进一步减小而迅速下降。BaTiO3陶瓷的剩余极化强度Pr随晶粒尺寸的增大而提高, 而矫顽场Ec却呈现出相反的趋势。晶粒尺寸对介电性能和压电性能的影响是由于90°电畴尺寸和晶界数量的变化。晶粒的晶体场和晶粒表面钉扎作用的变化影响了电畴, 进而改变电滞回线。  相似文献   

9.
为制备一种介电性能和力学性能优异的高温透波材料,采用凝胶注模(GC)结合先驱体浸渍裂解(PIP)工艺制备了BNmf-Si3N4w/Si3N4复合材料。研究了浸渍裂解次数及BNmf含量对复合材料的力学性能与介电性能的影响。结果表明:(1)随着PIP循环次数增加,复合材料的密度增大,气孔率降低,氮化硅基体逐渐形成三维网络结构包裹在复相微米增强体周围,复合材料力学性能提升;(2)当BNmf含量从4vol%增加到12vol%时,弯曲强度从175.5 MPa降低到139.3 MPa,断裂韧性从2.36 MPa·m1/2增加到2.73 MPa·m1/2,介电常数从3.62下降到3.25,介电损耗角正切从0.012下降到0.007;(3) BNmf-Si3N4w/Si3N4复合材料的强韧化机制主要...  相似文献   

10.
以平均粒径为0.7~0.9 mm的明胶(Gelatin)微球为基核, 通过定向沉积自组装法成功制备了以Gelatin为核、BaTiO3为壳的Gelatin/BaTiO3核壳复合粒子。利用TEM、XRD、FT-IR、TG和光学接触角测量等技术对复合粒子的形貌、结构、组成及表面亲水性能进行了研究。结果表明, 复合粒子为球形微粒, 具有良好的表面亲水性和分散稳定性, BaTiO3壳层约占粒子总质量的18.8%, 具有立方相晶相结构。将粒子分散到水凝胶弹性体中, 测量在有/无电场作用下得到的弹性体的储能模量, 借以考察复合粒子在弹性体中的电场响应性能, 发现Gelatin/BaTiO3复合粒子的电场响应性能明显强于纯BaTiO3粒子。说明将BaTiO3包覆在聚合物上能显著提高BaTiO3粒子的电场响应性能。  相似文献   

11.
本研究以Al2O3和Nd2O3为烧结助剂, 采用热压烧结法制备Si3N4陶瓷, 系统研究了添加BaTiO3对Si3N4陶瓷力学和介电性能的影响。研究结果表明, 随着BaTiO3含量的增加, 相对密度、抗弯强度和维氏硬度都随之降低, 而断裂韧性有所升高; 即使添加5wt%~20wt%的BaTiO3, Si3N4陶瓷的抗弯强度依然可以保持在600 MPa以上。Si3N4陶瓷的介电常数可以提高到9.26~11.50, 而介电损耗保持在10-3量级。在Si3N4陶瓷中未检测到BaTiO3结晶相, 可以认为Si3N4陶瓷介电常数的提高主要来源于烧结过程中形成的TiN。这些结果有助于拓展Si3N4陶瓷的应用领域。  相似文献   

12.
为了提高BaTiO3/PVDF复合材料的击穿场强。首先,利用多巴胺对BaTiO3进行表面功能化处理,得到多巴胺改性的BaTiO3(Dopa@BaTiO3);然后,将其与聚偏氟乙烯(PVDF)混合,采用液相浇铸法制得Dopa@BaTiO3/PVDF复合材料;最后,测量了不同Dopa@BaTiO3添加量的Dopa@BaTiO3/PVDF复合材料的击穿场强和介电性能。结果表明:与改性前的BaTiO3/PVDF复合材料相比,Dopa@BaTiO3/PVDF复合材料在击穿场强显著提高的同时,介电常数基本保持不变;当Dopa@BaTiO3添加量为3vol%时,击穿场强为210kV/mm,比改性前的复合材料的提高了78%;当Dopa@BaTiO3添加量为10vol%时,击穿场强为180kV/mm,比改性前的合材料的提高了88%。研究解决了BaTiO3/PVDF复合材料击穿场强较低的问题,可为同时提高复合材料的介电常数和击穿场强提供参考。  相似文献   

13.
钛酸钡(BaTiO3)具有优异的介电、铁电、压电和热释电等性能, 在微电子机械系统和集成电路领域具有广泛的应用。降低BaTiO3薄膜的制备温度使其与现有的CMOS-Si工艺兼容, 已成为应用研究和技术开发中亟需解决的问题。本研究引入与BaTiO3晶格常数相匹配的LaNiO3作为缓冲层, 以调控其薄膜结晶取向, 在单晶Si(100)基底上450 ℃溅射制备了结构致密的柱状纳米晶BaTiO3薄膜。研究表明:450 ℃溅射温度在保持连续柱状晶结构和(001)择优取向的前提下, 能获得相对较大的柱状晶粒(平均晶粒直径27 nm), 一定残余应变也有助于其获得了较好的铁电和介电性能。剩余极化强度和最大极化强度分别达到了7和43 μC·cm-2。该薄膜具有良好的绝缘性, 在 0.8 MV·cm-1电场下, 漏电流密度仅为10-5 A·cm-2。其相对介电常数εr展现了优异的频率稳定性:在1 kHz时εr为155, 当测试频率升至1 MHz, εr仅轻微降低至145。薄膜的介电损耗较小, 约为0.01~0.03 (1 kHz ~ 1 MHz)。通过电容-电压测试, 该薄膜材料展示出高达51%的介电调谐率, 品质因子亦达到17(@1 MHz)。本研究所获得的BaTiO3薄膜在介电调谐器件中有着良好的应用前景。  相似文献   

14.
吴再辉  秦珊  白帆  吴俊涛 《复合材料学报》2016,33(12):2712-2717
人体皮肤与空气间在介电常数上有着失配性,可穿戴设备所用的材料需要与人体皮肤有良好的匹配性能,而单一的材料与结构已不能满足这种需求。利用原位聚合法合成了一系列钛酸钡(BaTiO_3)/聚酰亚胺(PI)混合溶液,通过逐层流延涂覆的方法设计制备了一种具有阻抗渐变性质的多层BaTiO_3/PI复合薄膜。结果表明:BaTiO_3纳米粒子可在复合薄膜中均匀分散,调节无机粒子的含量,能够有效地控制复合薄膜的介电常数在2.5~34.0之间变化;同时,BaTiO_3/PI复合薄膜对外加电场的频率具有不敏感性,也具有良好的力学性能,能够满足可穿戴设备对材料的要求。  相似文献   

15.
为改善聚酰亚胺(PI)基复合薄膜界面相容性,达到提高其介电性能的目的,利用钛酸正丁酯的水解反应在钛酸钡纳米粒子(BT)表面包覆水合TiO_(2)。采用聚多巴胺(PDA)进一步包覆改性粒子,制备出具有核-双壳结构的钛酸钡纳米粒子(BT@TiO_(2)@PDA)。利用核-双壳结构形成双重梯度缓冲层,减小高介电钛酸钡纳米粒子和低介电聚合物之间由于介电常数差异造成的电场畸变。通过溶液流延法制备一系列含有不同质量分数的改性钛酸钡/聚酰亚胺复合薄膜(BT@TiO_(2)@PDA/PI)。结果表明:核-双壳结构可以改善钛酸钡纳米粒子在聚酰亚胺基体中的分散性及二者的界面相容性。当填料质量分数为40%时,BT@TiO_(2)@PDA/PI复合薄膜的介电常数κ提高到8.8(1 kHz),约为纯聚酰亚胺的2.7倍,为钛酸钡/聚酰亚胺复合薄膜(BT/PI)的1.4倍。介电-温度和介电-频率测试证实,BT@TiO_(2)@PDA/PI复合薄膜具有良好的温度和频率稳定性。在100 kHz的频率范围内,复合薄膜的介电损耗均小于0.010;当填料的质量分数低于40%时,温度从25℃增加到160℃,复合薄膜介电常数的降低数值均不超过0.6(1 kHz)。  相似文献   

16.
为解决直流电缆附件内因温度梯度和材料电导率差异而引起的局部电场畸变的难题,本文通过静电纺丝方法制备了钛酸铜钙(CaCu3Ti4O12)纳米纤维,并将其分散在液体硅橡胶中合成了具有非线性电导特性的CaCu3Ti4O12纳米纤维/液体硅橡胶复合介质。采用XRD和SEM对CaCu3Ti4O12纳米纤维和CaCu3Ti4O12纳米纤维/硅橡胶复合介质进行微观结构表征,并对CaCu3Ti4O12纳米纤维/硅橡胶复合介质的介电特性、空间电荷特性及在30℃、50℃、70℃条件下电导率随电场强度变化规律和击穿强度进行测试,最后建立电缆附件模型,并对附件应力锥根部电场进行仿真。结果发现:CaCu3Ti4O12纳米纤维/硅橡胶复合材料的介电常数和电导率都随着CaCu3Ti4O12纳米纤维含量的增加而增大,当纳米纤维达到3vol%时复合介质的相对介电常数增加到3.27,非线性电导率也变化了近4个数量级,经过空间电荷测试发现,空间电荷的消散量与CaCu3Ti4O12纳米纤维含量也正相关,复合材料的直流击穿强度随纳米纤维含量的增加而降低,通过对附件进行稳态电压作用下的电场分布仿真分析发现,当CaCu3Ti4O12纳米纤维的含量为2vol%时,应力锥根部最大电场强度已经从增强绝缘中转移到电缆主绝缘中,在正、反极性雷电冲击电压作用下,3vol%含量的CaCu3Ti4O12纳米纤维/硅橡胶复合介质作为增强绝缘材料时最大电场强度均远远低于其击穿强度。以上实验结果表明,CaCu3Ti4O12纳米纤维作为填充相在较低的掺杂浓度实现了对液体硅橡胶的改性,满足了复合介质应用于电缆附件的电气绝缘性能需求。   相似文献   

17.
近年来, 冷烧结低温制备陶瓷引起了很大关注, 并在BaTiO3陶瓷的制备上取得了一定进展。为了提高冷烧结BaTiO3陶瓷性能, 本研究采用水热法制备了分散性好、粒径为100 nm的四方相(晶格参数c/a为1.0085) BaTiO3粉末。采用0.1 mol/L的乙酸在100 ℃/1 h的条件下对粉末进行水热活化处理。以质量分数10% Ba(OH)2·8H2O为熔剂, 在350 MPa、400 ℃/1 h的条件下对粉体进行冷烧结, 最后经600 ℃/0.5 h退火获得了相对密度为96.62%、晶粒尺寸为180 nm, 常温介电(εr)为2836, 介电损耗(tanδ)低至0.03的BaTiO3陶瓷。乙酸处理后高活性粉末表面形成的非晶钛层有效促进了陶瓷的致密化, 抑制了杂相的生成和晶粒长大, 提高了介电性能, 大幅改善了冷烧结BaTiO3陶瓷出现的介电弥散现象, 从而实现了BaTiO3陶瓷的低温冷烧结制备。  相似文献   

18.
采用固相法制备了Ba0.9175Ca0.08Nd0.0025(Zr0.18Ti0.8175-xYxMn0.0025)O3 (BCZT-Y, x=0、0.5mol%、0.75mol%、1.0mol%、 1.5mol% 、2.0mol%)铁电陶瓷, 研究了不同Y3+掺杂量对该铁电陶瓷结构与介电性能的影响。结果表明: 随着Y3+掺杂量增加, Y3+进入晶格, BCZT-Y陶瓷的密度从4.029 g/cm3增加到6.058 g/cm3; 同时介电峰压低并展宽, 居里温度向低温方向移动, 表现出明显的铁电体弛豫特征, 采用Lorenz型公式对该实验结果进行拟合验证,发现随着Y3+掺杂量增加, 电滞回线变窄变斜、回线面积大幅减小, 剩余极化强度和矫顽电场降低。  相似文献   

19.
0.96NaNbO3-0.04CaZrO3(简称NNCZ)陶瓷在室温下展现出稳定的双电滞回线, 但是其储能密度、储能效率和击穿强度都比较低, 限制其成为储能材料。本工作通过掺杂Fe2O3, 利用Fe 3+离子变价的特点, 实现NNCZ储能性能的优化。采用传统固相法制备了(0.96NaNbO3-0.04CaZrO3)-xFe2O3(简称NNCZ-xFe)反铁电储能陶瓷, 并对样品的相结构、微观形貌、电学性能和储能性能进行了表征, 重点研究了Fe2O3掺杂量对NNCZ陶瓷介电和储能性能的影响规律。结果表明, 样品均具有单一的钙钛矿结构, 掺杂Fe2O3能明显降低NNCZ陶瓷的烧结温度, 晶粒平均尺寸随着掺杂量增大先减小后增大, 掺杂量x=0.02时, 晶粒平均尺寸最小(5.04 mm), 且具有较好的储能性能。室温下, NNCZ-0.02Fe击穿强度为230 kV/cm, 击穿前的有效储能密度和储能效率分别为1.57 J/cm 3和55.74%。在125 ℃和外加电场为180 kV/cm下, NNCZ-0.02Fe的储能密度为4.53 J/cm 3。掺杂Fe2O3使NNCZ陶瓷的烧成温度降低, 氧空位的迁移速率下降, 抑制晶粒的长大, 同时降低了介电损耗, 使得击穿强度增加; 适量氧空位钉扎使得反铁电相向铁电相相翻转变得困难, 避免出现哑铃状双电滞回线, 从而提高储能效率。本研究结果表明NNCZ-xFe在电介质储能领域具有潜在应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号