首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
磷石膏循环洗涤工艺研究   总被引:1,自引:0,他引:1  
主要研究了磷石膏水洗的工艺条件,如温度、液固比、水洗次数等因素对磷石膏中水溶性P2O5含量的影响,确定最佳工艺参数为:水洗温度为室温,液固比为3:1,洗涤次数为3次。设计了3次循环洗涤工艺路线,在该工艺条件下,磷石膏中水溶性P2O5洗出率约为95%,洗涤后水溶性P2O5质量分数降至0.1%以下。  相似文献   

2.
湿法磷酸副产磷石膏含有水溶性磷,直接堆放会造成磷资源浪费,并导致水环境污染。采用水洗和氧化钙沉淀的方式回收水溶性磷,分析用水量和温度对水溶性磷回收率的影响,研究氧化钙加入量对水洗液中磷回收率的影响。结果表明:在40℃、液固体积质量比0.7 mL/g、搅拌时间30 min、搅拌转速400 r/min条件下,水溶性磷80%以上进入水洗液中;采用氧化钙矿化水洗液,可实现水洗液中水溶性磷几乎完全沉淀。通过水洗矿化实现磷石膏中水溶性磷回收率达到80%,具有显著的经济价值。  相似文献   

3.
利用磷石膏和废氨水对二氧化碳(CO_2)进行矿化反应,研究反应温度、反应时间、液固比、氮硫物质的量之比、CO_2流量、搅拌转速、水洗预处理次数等因素对磷石膏-废氨水体系矿化CO_2能力的影响。通过实验确定最佳反应条件:反应温度40℃、反应时间60 min、液固比8.0 m L/g、氮硫物质的量之比2.4、CO_2流量500 m L/min、搅拌转速300 r/min、水洗预处理次数3次。在此条件下,磷石膏-废氨水对CO_2的矿化能力可达到100g磷石膏固定CO_223.60 g。  相似文献   

4.
通过模拟湿法磷酸工艺,研究反应温度、液相P2O5浓度、液相SO3浓度、料浆液固比对磷石膏中可溶磷和共晶磷含量的影响.理想工艺条件下制得的磷石膏中,可溶磷含量为0.32%(质量分数),共晶磷含量为0.19%(质量分数).  相似文献   

5.
去除可溶磷杂质和脱水是利用磷石膏制备胶凝材料必需的处理过程。通过改变快烧温度和时间对磷石膏进行处理,分别测定快烧磷石膏可溶磷含量、脱水相组成和胶凝性能,并对几种典型快烧条件下的磷石膏矿物组成和形貌进行分析,同时与经水洗后150℃煅烧4 h制备的磷石膏胶凝材料进行对比。结果表明:快烧后磷石膏为Ca SO4·2H2O、Ca SO4·1/2H2O和Ⅲ、Ⅱ型Ca SO4组成的复相石膏体系,可溶磷杂质含量随快烧温度提高和时间延长明显降低;800℃快烧30 s得到的磷石膏胶凝材料强度最高,2 h抗压强度达到3.79 MPa;经快烧处理磷石膏的颗粒尺寸明显减小。800℃快烧30 s能有效降低磷石膏中可溶磷杂质含量,并获得较高强度的磷石膏胶凝材料;虽然相比水洗后煅烧工艺,快烧制备的磷石膏胶凝材料强度和可溶磷杂质去除率稍低,但快烧是一种具有竞争力的处理工艺。  相似文献   

6.
硫酸处理磷石膏改性脱磷工艺研究   总被引:1,自引:1,他引:0  
磷石膏的综合利用,对环境安全、资源有效利用及磷肥工业可持续发展的技术安全均具有巨大的商业价值和现实意义.磷石膏中的五氧化二磷、氟、有机物等杂质影响磷石膏的利用.为简便、经济、环保地除去磷石膏中的磷,研究了用硫酸浸取磷石膏的反应条件,如硫酸质量分数、温度、时间及液固比等因素,及其对磷石膏中不溶五氧化二磷质量分数的影响.通过单因素分析和正交试验设计,确定了优化工艺条件.优化工艺条件参数为:硫酸质量分数为20%;反应温度为80℃;液固体积质量比为2 mL/g;反应时间为4.5 h.在此条件下处理后的磷石膏中五氧化二磷质量分数减少约99%,降低到0.005%以下.  相似文献   

7.
综合利用磷石膏对治理环境和资源循环利用具有重大意义.磷石膏中的五氧化二磷、氟、有机物等杂质影响磷石膏的利用.为了得到高品质磷石膏,研究了用硫酸浸取磷石膏的反应条件,如硫酸质量分数、反应温度、反应时间及液固比等因素对磷石膏中酸不溶五氧化二磷含量的影响.通过单因素分析和正交实验设计,确定了最佳工艺条件.最佳工艺条件为:硫酸质量分数35%;反应温度60℃;液固体积质量比为3 mL/g;反应时间4.5 h.在此条件下磷石膏中酸不溶五氧化二磷质量分数降低到0.01%以下.  相似文献   

8.
硫酸酸浸法除磷石膏中杂质氟的研究   总被引:1,自引:0,他引:1  
以H2SO4为浸取剂对磷石膏进行热浸取,考察磷石膏中杂质氟的去除情况,为磷石膏综合利用提供基础数据。研究在均匀设计实验的基础上,进一步考察了温度、时间、硫酸质量分数、含固量(质量浓度)、粒度5个因素对杂质氟去除率的影响规律。结果表明:温度、时间、硫酸是影响氟去除率的主要因素,而含固量、粒度对结果影响较小。较理想的除氟条件为浸取温度88℃,浸取时间45 min,H2SO4质量分数30%,含固量0.43 g/mL,在优化实验条件下杂质氟的去除率可以达到84.50%,处理后的磷石膏含氟仅为0.036%。采用硫酸酸浸处理磷石膏,杂质氟去除效果好,且提高了净化磷石膏的白度。  相似文献   

9.
郑旭  刘晨  王昕  黄赟  林宗寿 《水泥》2015,(5):10
研究了磷石膏中可溶磷、共晶磷和可溶氟对过硫磷石膏矿渣水泥浆物理性能的影响规律,通过添加钢渣粉对磷石膏进行改性,并对钢渣粉的改善机理进行了初步探讨。结果表明,磷石膏中可溶磷、共晶磷和可溶氟含量对过硫磷石膏矿渣水泥浆的凝结时间和胶砂强度影响显著。磷石膏经过适量的钢渣粉预处理可以缩短水泥浆凝结时间并提高其早期强度。因此,合理控制磷石膏中可溶磷、共晶磷和可溶氟含量并采用钢渣粉进行预处理,可以制备凝结时间较短,早期强度较高的过硫磷石膏矿渣水泥浆。  相似文献   

10.
利用企业废氨水、磷石膏与CO_2制备硫酸铵和碳酸钙,可以实现磷石膏和废氨水的资源化利用。系统考察了反应温度、反应时间、液固比、氮硫比、CO_2流量、搅拌速度和水洗预处理对硫酸钙转化率的影响。结果表明:在反应温度40℃、反应时间60min、液固比8.0、氮硫比2.4、CO_2流量500mL/min、搅拌速度300r/min、水洗预处理3次的最佳反应条件下,硫酸钙的转化率可达到96.11%。试验结果对磷石膏固废的综合利用和CO_2减排具有一定的实际意义。  相似文献   

11.
用磷石膏代替天然石膏,以膨胀熟料、磷石膏和石灰石为原料制备了高性能混凝土膨胀剂,考察了原料配比(膨胀熟料∶磷石膏∶石灰石,质量比)、自由水含量、可溶氟含量、可溶磷含量及磷石膏改性温度对膨胀剂性能的影响。结果表明:当原料配比为45∶20∶35、改性温度为650℃时,7d和21d的限制膨胀率分别为0.038%和-0.014%;当膨胀剂原料中自由水含量小于2.0%、可溶氟含量小于1.8%、可溶磷含量小于5.0%时,膨胀剂的凝结时间、限制膨胀率、抗压强度均符合国标要求。  相似文献   

12.
采用单因素法研究了磷石膏粒度、物料配比、反应温度和反应时间对磷石膏转化率的影响,试验结果表明,在磷石膏粒度全部过80目,磷石膏与碳酸铵的质量比为550:270,碳酸铵用量为理论用量的103%~110%,反应温度为65~70℃,反应时间为2.5~3h的条件下,磷石膏的转化率可达到96%以上,反应得到的固体硫酸铵的产品质量可达到GB 535-1995中一等品的要求。并采用正交试验研究了各工艺参数对磷石膏转化率的影响顺序,试验结果为,氨的用量影响最大,其次为固液比,然后是反应时间、配料比和温度。此外,对副产碳酸钙渣生产轻质碳酸钙进行了研究,试验得到的轻质碳酸钙纯度达到了96%以上,产品的白度值大于90。  相似文献   

13.
《应用化工》2017,(7):1313-1317
在HCl-H_2O体系中利用溶液法对磷石膏进行除杂,研究溶液pH值、反应时间、固液比及温度对磷石膏中可溶性磷和可溶性氟的去除率的影响。结果表明,HCl-H_2O体系除杂的最佳工艺参数为:pH=1,时间2 h,固液比=1∶3 g/mL,温度103℃。此工艺下,可溶性磷、氟的去除率分别达到88.73%和93.77%,磷石膏中残余的可溶性杂质含量低至W_(P_2O_5)=0.08%,W_(F-)=0.005%,能够满足GB/T 23456—2009中作为石膏建材的要求,且具有经济可行性。  相似文献   

14.
为探讨磷石膏转化利用的新途径,进行了用氢氧化钠分解磷石膏将其转化为氢氧化钙和硫酸钠的实验。以一次一因素实验法考查了影响磷石膏分解的主要因素及可以获得的较优工艺条件。同时通过化学分析和粒度分析对滤渣的性质进行了分析评价。实验表明磷石膏分解适宜的工艺条件:配料比(氢氧化钠与磷石膏的质量比)为0.48∶1,液固比(水与磷石膏的质量比)为4∶1,反应温度为室温,反应时间为10 min。在此条件下磷石膏的分解率可达94.83%,滤渣中氢氧化钙的含量为80.96%(质量分数)。该工艺的优点是磷石膏分解速率快、分解转化效率高。  相似文献   

15.
《应用化工》2022,(7):1313-1317
在HCl-H_2O体系中利用溶液法对磷石膏进行除杂,研究溶液pH值、反应时间、固液比及温度对磷石膏中可溶性磷和可溶性氟的去除率的影响。结果表明,HCl-H_2O体系除杂的最佳工艺参数为:pH=1,时间2 h,固液比=1∶3 g/mL,温度103℃。此工艺下,可溶性磷、氟的去除率分别达到88.73%和93.77%,磷石膏中残余的可溶性杂质含量低至W_(P_2O_5)=0.08%,W_(F-)=0.005%,能够满足GB/T 23456—2009中作为石膏建材的要求,且具有经济可行性。  相似文献   

16.
采用了3种不同的处理方法,包括水洗法、石灰中和法及石灰粉煤灰复合改性法来处理磷石膏,并对其配制的水泥进行了物理性能的检测.结果表明,水洗磷石膏做调凝剂其凝结时间长于掺天然石膏的水泥;石灰中和磷石膏与天然石膏的效果比较一致;石灰粉煤灰改性磷石膏可以有效固化或固结可溶磷和可溶氟,效果更明显,在代替天然石膏的同时,还可节省熟料.  相似文献   

17.
磷石膏是湿法制磷酸工业中产生的固体废物。以废弃磷石膏为原料,用水热合成法制备了硫酸钙晶须,研究了磷石膏粒径、陈化时间、反应温度、反应时间四个因素对硫酸钙晶须形貌的影响,借助X射线衍射仪(XRD)、扫描电子显微镜(SEM)及热重量分析仪(TGA)对产物进行表征。结果表明:经水洗除杂后,未经筛分的磷石膏在反应温度为140℃、反应时间为3h、陈化1h后趁热过滤的条件下制得的硫酸钙晶须,长径比平均达到35.4,形貌规整。  相似文献   

18.
以磷石膏和碳酸铵为原料,采用复分解法制备硫酸铵。考察了原料物质的量比、反应温度、反应时间、液固比、搅拌器转速等因素对磷石膏制备硫酸铵的影响。通过实验,确定了最佳工艺条件:原料液中CO2-3与SO2-4物质的量比为1.5,反应温度50℃,反应时间90 min,液固比为5.0,搅拌器转速为200 r/min以上。在此条件下,磷石膏制备硫酸铵转化率大于90.0%,产品质量分数大于98.0%。  相似文献   

19.
通过分析磷石膏蒸压后样品的物相组成、相对结晶度、烘干抗压强度、微观形貌,研究了蒸压温度、保温时间、液固比、杂质等因素对磷石膏蒸压制备α-半水石膏的影响。结果表明:磷石膏蒸压后所得样品的烘干抗压强度与α-半水石膏晶体的相对结晶度呈正相关关系;在蒸压温度为130℃、保温时间为3~5 h、液固质量比为0.25条件下,所得α-半水石膏的相对结晶度高、烘干抗压强度大、晶体微观形貌完整且长径比小;磷石膏中的杂质会对蒸压样品的力学强度产生影响,将磷石膏水洗处理后,在蒸压温度为130℃、保温时间为3 h、液固质量比为0.25条件下,可制得2 h抗折强度为7.3 MPa、烘干抗压强度为32.8 MPa的α-半水石膏,该α-半水石膏符合JC/T 2038—2010《α型高强石膏》α30强度等级的要求。  相似文献   

20.
磷石膏水洗净化试验及工艺   总被引:1,自引:0,他引:1  
1磷石膏杂质含量对其应用性能的影响磷石膏与天然石膏相比含有较多杂质,这些杂质的存在对其应用性能造成了有害影响。磷石膏中磷分为可溶性磷和非可溶性磷;对石膏制品造成影响的主要是可溶性磷和共晶体磷。氟以可溶氟(NaF)与CaF2、Na2SIF6等难溶氟形态存在;对石膏制品造成影响的主要是可溶氟。磷石膏中钾、钠主要以碳酸盐、硫酸盐、磷酸盐、氟化物等可溶盐形式存在;磷石膏制品受潮时,钾、钠离子沿硬化体孔隙迁移至表面,水分蒸发后在表面析晶,使制品表面产生起霜和粉化现象。磷、氟影响石膏制品的凝结时间和强度,钾、钠过高会出现纸面石膏板生产中不粘纸现象。本试验采取水洗处理方法,去除磷石膏中杂质,从而使磷石膏能广泛用于纸面石膏板、石膏砌块等建材产品的生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号