首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of nitric oxide (NO) in the long-term serotoninergic neurotoxicity induced by (+/-)3,4-methylenedioxymethamphetamine (MDMA) in rats was investigiated. Pretreatment with Nomega-nitro-L-arginine (L-NOARG) (10 mg kg-1), a nitric oxide synthase (NOS) inhibitor, partially protected against long-term serotonin (5-HT) depletion induced by MDMA (40 mg kg-1) in frontal cortex and parietal cortex, but not in other brain regions examined. Brain NOS activities in these two regions were significantly elevated at 6 h after MDMA administration. Moreover, L-NOARG pretreatment caused significant inhibition of brain NOS activity but did not affect the acute 5-HT and dopamine (DA) changes or the hyperthermia induced by MDMA. These results suggest that it is the NOS inhibitory properties of L-NOARG, rather than its effects on the acute monoamine changes or the hyperthermia induced by MDMA, that are responsible for the prevention of neurotoxicity. The regional differences on the protection of L-NOARG and on the activation of NOS by MDMA indicate the unequal role that NO may play in MDMA-induced neurotoxicity in different brain regions.  相似文献   

2.
Hydrogen peroxide (H2O2, 3.3 mM) partially reversed the hypoxic depression of the evoked population spike recorded from CA1 region of rat hippocampal slices. It is known that elevated endogenous adenosine contributes to the hypoxic inhibition of the population spike. Exogenous adenosine (100 microM) inhibited the population spike that had been partially resuscitated by H2O2 during maintained hypoxia. It is concluded that the ability of H2O2 to oppose hypoxic depression does not occur at the level of the adenosine receptor since added adenosine was still effective in inhibiting the evoked potential in the presence of H2O2.  相似文献   

3.
Digital imaging microfluorimetry was used to visualize changes in mitochondrial potential and intracellular Ca2+ concentration, [Ca2+]i, in thick slices of rat hippocampus. Electrical activity, especially stimulus train-induced bursting (STIB) activity, produced slow, prolonged changes in mitochondrial potential within hippocampal slices as revealed by fluorescence measurements with rhodamine dyes. Changes in mitochondrial potential showed both temporal and spatial correlations with the intensity of the electrical activity. Patterned changes in mitochondrial potential were observed to last from tens of seconds to minutes as the consequence of epileptiform discharges. STIB-associated elevations in [Ca2+]i were also prolonged and exhibited a spatial pattern similar to that of the mitochondrial depolarization. The mitochondrial depolarization was sensitive to TTX and glutamate receptor blockers ([Mg2+]o and CNQX or DNQX plus D-AP-5) and to the inhibition of glutamate release by activation of presynaptic NPY receptors. The monitoring of mitochondrial potential in slice preparations provides a new tool for mapping synaptic activity in the brain and for determining the roles of mitochondria in regulation of brain synaptic activity.  相似文献   

4.
The ability to fuel neurons via glycogenolysis is believed to be an important function of glia. Indeed, the slow, rather than immediate, depression of synaptic transmission in hippocampal slices during exogenous glucose deprivation suggests that intrinsic energy reservoirs help to sustain neurotransmission. It is believed that glia fuel neighboring neurons via diffusible monocarboxylates such as pyruvate and lactate, although a role for glucose has been proposed also. Using alpha-cyano-4-hydroxycinnamate (4-CIN) to inhibit monocarboxylate transport and cytochalasin B (CCB) to inhibit glucose transport, we examined the role of glucose and monocarboxylates in supporting the functional and morphological integrity of hippocampal neurons during glucose deprivation. Although 200 microM 4-CIN failed to depress EPSPs supported by 10 mM glucose, pretreatment with 4-CIN accelerated the depression of EPSPs during glucose deprivation. 4-CIN also accelerated the decline in glucose-supported EPSPs after administration of 50 microM CCB, whereas CCB failed to alter the slow decay of pyruvate-supported EPSPs during pyruvate deprivation. 4-CIN did not alter the morphology of pyramidal neurons in the presence of 10 mM glucose but produced significant damage during glucose deprivation or CCB administration. These results suggest that endogenous monocarboxylates rather than glucose maintain neuronal integrity during energy deprivation. Furthermore, EPSPs supported by 2-3.3 mM glucose were sensitive to 4-CIN, suggesting that endogenous monocarboxylates are involved in maintaining neuronal function even under conditions of mild glucose deprivation.  相似文献   

5.
In toto mouse embryos were cultivated at embryonic day 8.5 for 26 h with 105, 310 or 620 microM caffeine; 105-310 microM correspond to concentrations transferred by the placenta of heavy caffeine consumers. Failure of neural tube closure, excessive proliferation of neuroepithelial cells and premature evagination of telencephalic vesicles were present in 50% of treated embryos. When reaching the embryonic neural tube before neuronal migration, caffeine regionally modifies the schedule and/or rate of neural cell proliferation.  相似文献   

6.
The interaction of chronic in vivo lead exposure and acute in vitro ethanol treatment on synaptic neurotransmission and plasticity were studied using extracellular electrophysiological techniques in CA1 region of hippocampal brain slices from adult rats. Neither chronic lead exposure nor acute ethanol treatment had any significant effect on field excitatory postsynaptic potentials (EPSPs). In vivo lead exposure enhanced short-term potentiation (STP, potentiation that decays within 30 min) by 21% shortly after 'weak' tetanus, but had no effect on long-term potentiation (LTP, sustained at least 1 h). In vitro bath application of 60 mM ethanol inhibited STP by 35% and blocked LTP induced by 'weak' tetanus in slices from Pb exposed rats (500 ppm lead acetate, 56-70 days), while having no effect on STP or LTP in slices from control counterpart Na-exposed rats (pair-fed 216 ppm sodium acetate). In contrast, 'strong'-tetanus-induced LTP was abolished in Pb-exposed slices, and 60 mM ethanol slightly inhibited STP and blocked LTP in slices from Na-exposed rats. These differences could not be explained by differences in ethanol inhibition of NMDA-mediated field EPSPs because they were similarly reduced in slices from Na-exposed (30%) and Pb-exposed (25%) rats. These findings suggest that the strength of the tetanus used determines whether or not synaptic plasticity is blocked by either chronic lead exposure or acute ethanol treatment, and that even in adult rats, hippocampal synaptic LTP can be compromised by combined exposure to ethanol and lead. More importantly, these findings suggest the consequences of combined lead exposure and alcohol abuse in the adult human population may not be fully recognized yet.  相似文献   

7.
Evoked field potentials were recorded in the CA3 region of rat hippocampal slices to detect whether intracellular Ca2+ stores are involved in the epileptiform effects of the two prototypic GABA(A) antagonists, bicuculline methiodide (BMI) and gabazine (SR-95531; GBZ). Field population spikes gradually increased and became repetitive (epileptiform bursting) in the presence of either BMI (5 microM), or GBZ (5 microM). Thapsigargin (2 microM), a depletor of intracellular Ca2+ stores, reduced the epileptiform effect of BMI, but had no significant effect on the GBZ-induced hyperexcitability. These data suggest that Ca2+ release from intracellular stores participates in the epileptiform response of hippocampal CA3 neurons to BMI, but not in the response to GBZ.  相似文献   

8.
The effect of a permanent transection on myelin gene expression in a regenerating sciatic nerve and in an adult sciatic nerve was compared to establish the degree of axonal control exerted upon Schwann cells in each population. First, the adult sciatic nerve was crushed, and the distal segment allowed to regenerate. At 12 days post-crush, the sciatic nerve was transected distal to the site of crush to disrupt the Schwann cell-axonal contacts that had reformed. Messenger RNA (mRNA) levels coding for five myelin proteins were assayed in the distal segment of the crush-transected nerve after 9 days and were compared to corresponding levels in the distal segments of sciatic nerves at 21 days post-crush and 21 days post-transection using Northern blot and slot-blot analysis. Levels of mRNAs found in the distal segment of the transected and crush-transected nerve suggested that Schwann cells in the regenerating nerve and in the mature adult nerve are equally responsive to axonal influences. The crush-transected model allowed the genes that were studied to be classified according to their response to Schwann cell-axonal contact. The levels of mRNAs were 1) down-regulated to basal levels (P0 and MBP mRNAs), 2) down-regulated to undetectable levels (myelin-associated glycoprotein mRNAs), 3) upregulated (mRNAs encoding 2'3'-cyclic nucleotide phosphodiesterase and beta-actin), or 4) not stringently controlled by the removal of Schwann cell-axonal contact (proteolipid protein mRNAs). This novel experimental model has thus provided evidence that the expression of some of the important myelin genes during peripheral nerve regeneration is dependent on continuous signals from the ingrowing axons.  相似文献   

9.
Heparin-binding growth-associated molecule (HB-GAM) is a developmentally regulated secretory protein with neurite outgrowth-promoting activity. High-frequency stimulation leading to induction of long-term potentiation (LTP) resulted in increased expression of HB-GAM in rat hippocampal area CA1. When tetanization was given in the presence of antagonists of the N-methyl-D-aspartate (NMDA) receptor and postsynaptic voltage-gated calcium channels, the mRNA level was comparable to control levels. The results indicate that high frequency stimulation inducing LTP results in calcium-dependent enhancement in HB-GAM expression, and imply a role for this extracellular protein in the modulation of synaptic function in the hippocampus.  相似文献   

10.
Mortality of people with mental retardation receiving services in California was examined. The large population (N = 118,653) enabled us to work directly with mortality rates at specific ages. Up to about age 35, mortality rates of people with Down syndrome were comparable to those of people with mental retardation due to other causes. Subsequently, the increase was much more rapid in the group with Down syndrome. Mortality rates of individuals with Down syndrome doubled every 6.4 years compared to 9.6 years for people without Down syndrome. Life tables were constructed; the remaining life expectancy of a 1-year-old child with Down syndrome with mild/moderate retardation was 55 years and with profound mental retardation, 43 years.  相似文献   

11.
The early and long-lasting effects of pentylenetetrazol-kindling on hippocampal CA1 synaptic transmission were investigated. Experiments were carried out in the hippocampal slices from control and kindled rats at two post-kindling periods, i.e. 48-144 h (early phase) and 30-33 days (long-lasting phase). Field potentials, i.e. population excitatory postsynaptic potential (pEPSP) and population spike (PS) were recorded at the stratum pyramidale following stimulation of the stratum radiatum. Kindling-induced changes in synaptic transmission were assessed by stimulus-response functions and paired-pulse responses. The results showed that 48-144 h after kindling, the PS amplitude in the CA1 of kindled slices enhanced, and a second PS appeared compared to control slices. But at 30-33 days after kindling, the pEPSP slope in the CA1 of kindled slices enhanced without any change in the PS compared with those in the control slices. Evaluation of paired-pulse responses showed a significant reduction in paired-pulse inhibition for PS 48-144 h after kindling and a significant increase in paired-pulse inhibition for pEPSP 30-33 days after kindling. Our results suggest that pentylenetetrazol-kindling is accompanied by enhanced excitability and a reduction of paired-pulse inhibition in hippocampal CA1. The increased paired-pulse inhibition one month after kindling, may be interpreted as an adaptive process to cope with subsequent seizures.  相似文献   

12.
A NAD-dependent mannitol dehydrogenase (MtlD) was purified to homogeneity from P. fluorescens DSM50106 and the N-terminal amino acid sequence was determined. An oligonucleotide deduced from this peptide sequence was used as a probe to isolate the mannitol dehydrogenase gene (mtlD) from a genomic library of P. fluorescens. Nucleotide sequence analysis of a 1.8 kb NruI fragment containing the entire mtlD gene revealed an open reading frame of 1482 bp encoding a protein with a calculated molecular weight of 54.49 kDa. The enzyme shared a high similarity with a mannitol dehydrogenase from Rhodobacter sphaeroides and a putative mannitol dehydrogenase of Saccharomyces cerevisae with an overall identity in amino acid sequence of 44% and 42%, respectively, whereas the similarity to mannitol-1-phosphate dehydrogenases of Escherichia coli or Enterococcus faecalis was only about 23% of identical amino acids. By construction of inducible expression plasmids the specific activity of the mannitol dehydrogenase synthesized in E. coli was increased from 0.02 U (mg protein)(-1) to 10 U (mg protein)(-1). After fusion of six histidine codons to the 3' end of mtlD gene and expression in E. coli active mannitol dehydrogenase could be purified in a two-step procedure by affinity chromatography using a Ni2+ matrix column. The purified enzyme exhibited a specific activity of 46 U (mg protein)(-1) and was shown to be a polyol dehydrogenase with a broad substrate spectrum oxidizing efficiently mannitol, sorbitol and arabitol.  相似文献   

13.
Glutamate is a major neurotransmitter in the CNS. Its release activates NMDA and non-NMDA receptors on the postsynaptic membrane. NMDA receptor activation is shown to be important in physiological and pathological events. The modulatory sites on the NMDA receptor-channel ionophore complex are important in the regulation of the channel's cation conductance. Regulation of the channel by proton concentration may be important in the alkalinization that occurs during the normal release of glutamate or in the acidification that occurs during hypoxia/ischemia. In this study, the selective downregulation of the NMDA channel with slight extracellular pH changes and reversibility of this modulation have been shown in hippocampal slices. It has also been shown that hippocampal slices are more responsive to pH changes than other experimental preparations. The downregulation of the NMDA current may represent a native control mechanism. Direct and indirect modulation caused by extracellular pH changes on the NMDA receptor ionophore complex might be important in the overall response of the neuron under pathophysiological changes.  相似文献   

14.
The rat hippocampal slice preparation and its electrophysiology were used to assess the toxicity of two sulfur-containing amino acids, L-cysteate (CA) and L-cysteine (CYS). Both compounds were innocuous under normal conditions but became toxic in energy-deprived (lack of oxygen or glucose) slices. CA and CYS toxicity was apparent as both reduced the number of slices that normally recover their neuronal function (evoked CA1 population spike) after a standardized period of hypoxia or glucose deprivation (GD). The competitive N-methyl-D-aspartate (NMDA) antagonist DL-2-amino-5-phosphonovalerate blocked the toxicity of both CA and CYS in hypoxic slices, but it was effective only against CYS toxicity in glucose-deprived slices. The glycine antagonist 7-chlorokynurenate blocked CA and CYS toxicity in hypoxic slices but was unable to block their toxicity in glucose-deprived tissue. Perfusing slices with medium containing a high magnesium concentration blocked the toxicity of CA in both hypoxic and glucose-deprived slices, a treatment that was ineffective against CYS toxicity under either condition. Calcium depletion from the perfusion medium completely blocked the damaging effect of both amino acids in hypoxic slices, but it only partially blocked the toxicity of CA and did not block that of CYS in glucose-deprived slices. These results suggest that CA and CYS activate different NMDA receptor subsets and other glutamate receptor subtypes. Moreover, the results indicate a possible difference between the mechanism that lead to hypoxic neuronal damage and the one that lead to hypoglycemic neuronal damage.  相似文献   

15.
1. Topiramate is a structurally novel anticonvulsant which was recently approved for adjunctive therapy in partial and secondarily generalized seizures. The present study was aimed at elucidating the mechanisms underlying the anticonvulsant efficacy of topiramate using intra- and extracellular recording techniques in the in vitro hippocampal slices. 2. When stimuli were delivered every 20 s, topiramate had no measurable effect on both field excitatory postsynaptic potentials (fEPSPs) and population spikes (PSs). However, increasing the stimulation frequency from 0.05-0.2 Hz, topiramate significantly decreased the slope of fEPSP and the amplitude of PS in a concentration-dependent manner. The amplitude of presynaptic fiber volley was also reduced. 3. Topiramate did not affect the magnitude of paired-pulse inhibition and monosynaptically evoked inhibitory postsynaptic potentials (IPSPs). 4. Sustained repetitive firing was elicited by injection of long duration (500 ms) depolarizing current pulses (500-800 pA). Superfusion with topiramate significantly reduced the number of action potentials evoked by a given current pulse. 5. After blockade of GABA receptors by bicuculline, burst firing which consisted of a train of several spikes riding on a large depolarizing wave termed paroxysmal depolarizing shift (PDS) was recorded. Application of topiramate reduced the duration of PDS and later spikes with less effect on the initial action potential. 6. These results suggest that frequency-dependent inhibition of neuronal activity due to blockade of Na+ channels may account largely for the anticonvulsant efficacy of topiramate.  相似文献   

16.
We are able to recognize very many different faces of individuals we know, apparently using a complex and ill-understood set of identifying features; it seems natural to assume that faces are perceived as spanning the equivalent of a high-dimensional vector space. I explore ways to probe the structure of perceptual face space without making a priori hypotheses about either the space itself or the mechanisms of perception and recognition, and using solely neuronal responses recorded in the monkey, and metrics derived from their mutual similarities. Within this approach, the dimensionality of face space remains an elusive concept, but the metric content and ultrametric content of the face sets used can be quantified and compared with those of other perceptual sets.  相似文献   

17.
In the CA1 region of rat hippocampal slices, H2O2 (0.294-2.94 mM) caused initial augmentation, and subsequent long-lasting depression, of population spikes and excitatory postsynaptic potentials. The effect of H2O2 may not be mediated by its degradation product, hydroxyl radicals, because an iron chelator deferoxamine did not block the effect. A catalase inhibitor 3-amino-1,2,4-triazole only modestly attenuated the initial augmentation, suggesting that the effect of H2O2 is not attributable to catalase-dependent O2 generation, either. An N-methyl-D-aspartate receptor antagonist DL-2-amino-5-phosphonovaleric acid had no influence on the effect of H2O2, whereas a gamma-aminobutyric acid type A receptor channel blocker picrotoxin attenuated long-lasting depression, indicating that gamma-aminobutyric acid-mediated inhibition is altered during the depression phase. The initial augmentation but not subsequent depression was attenuated by a phospholipase A2/C inhibitor 4-bromophenacyl bromide, suggesting the involvement of lipid signaling molecule(s) in the enhancement of excitatory synaptic transmission. These results suggest that H2O2 regulates hippocampal synaptic transmission via multiple mechanisms.  相似文献   

18.
A high-performance liquid chromatography assay for hydroxyurea in human serum was developed based on a commercial colorimetric assay kit for urea (Sigma Diagnostics). Serum (0.5 ml), spiked with methylurea as an internal standard, was treated with 70% perchloric acid. Supernatant (0.2 ml) was combined with 0.7 ml of BUN acid reagent and 0.6 ml of BUN color reagent. The resulting colored reactant (100 microl) was analyzed on a 300 x 3.9 mm Bondclone 10 C18 column coupled with a UV-Vis detector, at 449 nm. The mobile phase was 13% acetonitrile in water. Retention times of colored derivatives of hydroxyurea and methylurea were 6.5 and 12.2 min, respectively. The log-log calibration curve was linear from 0.0065 to 1.31 mM. Average accuracy was 99.9+/-4.0% and the intra- and inter-day error of assay did not exceed 11%.  相似文献   

19.
Organotypic cultured slices of the rat hippocampus undergo synaptic reorganization. Besides the establishment of reciprocal connections between area CA1 and the dentate gyrus (DG), collateral excitatory connections between granule cells are formed which are similar to those appearing in several epilepsy models and in the DG from patients with temporal lobe epilepsy. We studied the characteristics of epileptiform activity induced by low Mg2+ perfusion in cultured hippocampal slices using extra- and intracellular recordings. With low Mg2+ perfusion synchronous seizure like events (SLEs) were readily observed in the DG and areas CA3 and CA1. Also, the isolated DG was able to display seizure like activity. Intracellular recordings revealed long lasting depolarization shifts in granule cells of the DG and pyramidal cells of areas CA3 and CA1. The SLEs, lasting 2-3 s, could be recorded for at least 3 h in areas CA1 and CA3. However, approximately an hour after perfusion with low Mg2+, the epileptiform activity disappeared in the DG and responses to single pulse hilar stimulation progressively deteriorated. These responses returned to control values 1 week after reincubating the cultures. Interestingly, no deterioration of stimulus induced responses was observed in the isolated DG after exposure to low Mg2+.  相似文献   

20.
Several protein kinases are known to phosphorylate Ser/Thr residues of certain GABAA receptor subunits. Yet, the effect of phosphorylation on GABAA receptor function in neurons remains controversial, and the functional consequences of phosphorylating synaptic GABAA receptors of adult CNS neurons are poorly understood. We used whole-cell patch-clamp recordings of GABAA receptor-mediated miniature IPSCs (mIPSCs) in CA1 pyramidal neurons and dentate gyrus granule cells (GCs) of adult rat hippocampal slices to determine the effects of cAMP-dependent protein kinase (PKA) and Ca2+/phospholipid-dependent protein kinase (PKC) activation on the function of synaptic GABAA receptors. The mIPSCs recorded in CA1 pyramidal cells and in GCs were differentially affected by PKA and PKC. In pyramidal cells, PKA reduced mIPSC amplitudes and enhanced the fraction of events decaying with a double exponential, whereas PKC was without effect. In contrast, in GCs PKA was ineffective, but PKC increased the peak amplitude of mIPSCs and also favored double exponential decays. Intracellular perfusion of the phosphatase inhibitor microcystin revealed that synaptic GABAA receptors of pyramidal cells, but not those of GCs, are continually phosphorylated by PKA and conversely, dephosphorylated, most likely by phosphatase 1 or 2A. This differential, brain region-specific phosphorylation of GABAA receptors may produce a wide dynamic range of inhibitory synaptic strength in these two regions of the hippocampal formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号