首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Spin trapping using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) has been used to detect and distinguish free radicals in samples of Greek extra virgin olive oils. A number of the samples examined immediately after the addition of the spin trap showed a spontaneous complex electron paramagnetic resonance (EPR) signal. The majority of DMPO-radical adducts formed (80–90%) represented peroxyl and alkoxyl radical adducts. Similar spectra were recorded when DMPO was added in oxidized triolein and then treated with Fe2+, Fe3+, or Cu2+ or when EPR-silent olive oil samples were treated with these metallic ions. Metal ion-catalyzed decomposition of triolein hydroperoxides, as recorded by EPR signal intensity, increased with increasing metal ion concentration in the micromolar range. The relative concentration of alkoxyl-DMPO adducts increased with increasing Fe2+ or Fe3+ concentration, whereas that of peroxyl-DMPO species decreased. In contrast, the relative concentrations of alkoxyl and peroxyl species produced by Cu2+ were similar over the whole metal concentration range examined. Exposure of EPR-silent virgin olive oil or oxidized triolein to ultraviolet light in the presence of DMPO resulted in the detection of a three-line spectrum characterized by wide line widths.  相似文献   

2.
The aim of this study was to gain further insight into β-carotene thermal degradation in oils. Multiresponse modeling was applied to experimental high-performance liquid chromatography–diode array detection (HPLC–DAD) data (trans-, 13-cis-, and 9-cis-β-carotene concentrations) during the heat treatments (120–180 °C) of two β-carotene-enriched oils, i.e., palm olein and copra. The test of different reaction schemes showed that β-carotene isomerization reactions were dominant and reversible. The resulting cis isomers and trans-β-carotene simultaneously underwent oxidation and cleavage reactions at the same rate constant. From the kinetic analysis, it appeared that—contrary to oxidation and cleavage reactions—isomerization rate constants did not follow the Arrhenius law. However, the isomerization equilibrium constant increased with temperature, favoring isomer production, particularly 9-cis-β-carotene. Its production was shown to be concomitant with oxidation and cleavage reactions, indicating that 9-cis-β-carotene could be a good degradation indicator during oil storage or processing.  相似文献   

3.
The effects of extraction methods on sesame oil stability   总被引:1,自引:0,他引:1  
The oxidative stability of sesame oil, as measured by the Rancimat test, was shown to be dependent on extraction methods and seed pre-treatment. Oils extracted from whole seeds were more stable than those extracted from dehulled seeds by the same method. Extraction of the same seeds with polar solvents and effective seed crushing yielded more-stable oils (16.7–21.3 Rancimat hours) compared with extraction with nonpolar solvents and coarsely crushed or pressed seeds (4.5–6.4 Rancimat hours). Heptane-isopropanol (3:1, vol/vol) provided slightly more stable oils thann-hexane by the same method. Results are discussed in relation to some of the major anti- and prooxidants present in the oils.  相似文献   

4.
The oxidative stability of diacylglycerol (DAG)-enriched soybean oil and palm olein produced by partial hydrolysis using phospholipase A1 (Lecitase Ultra) and molecular distillation was investigated at 110 °C by the Rancimat method with and without addition of synthetic antioxidants. Compared with triacylglycerol oils, the DAG-enriched oils displayed lower oxidative stability due to a higher content of unsaturated fatty acids and a lower level of tocopherols. With the addition (50–200 mg/kg) of tert-butylhydroquinone (TBHQ) or ascorbyl palmitate (AP), the oxidative stability indicated by induction period (IP) of these DAG-enriched oils under the Rancimat conditions was improved. The IP of the diacylglycerol-enriched soybean oil increased from 4.21 ± 0.09 to 12.64 ± 0.42 h when 200 mg/kg of TBHQ was added, whereas the IP of the diacylglycerol-enriched palm olein increased from 5.35 ± 0.21 to 16.24 ± 0.55 h when the same level of AP was added. Addition of TBHQ, alone and in combination with AP resulted in a significant (p ≤ 0.05) increase in oxidative stability of diacylglycerol-enriched soybean oil. AP had a positive synergistic effect when used with TBHQ.  相似文献   

5.
The oxidative stability of five different oils was determined by Rancimat analysis with conductivity and chemiluminescence measurements for evaluation of the induction periods. Samples of oil, taken at intervals from the Rancimat apparatus, were used for chemiluminescence measurements. The chemiluminescence results were plotted vs. time, and the resulting curves were evaluated with a graphical tangential procedure in the same way as the curves of the Rancimat method (conductivity measurement). Induction periods of the oils assessed by Rancimat and chemiluminescence methods showed a significant linear correlation (r=0.9865). The temperature dependence of the induction periods evaluated by chemiluminescence and by conductivity was investigated with walnut oil. A marked temperature dependence was observed for both.  相似文献   

6.
Determination of oxidative stability of different edible oils, fats, and typical fat products was made using the Rancimat method and the active oxygen method. Induction periods (IP) were recorded under controlled conditions at 110, 120, and 130 ± 0.1°C for all products and over a range of 100–160°C for selected fats. A general oil stability evaluation industrial shortenings and vanaspati to be the most stable fats, with IP ranging from 10.00 to 15.47 h. Margarine and butter samples (IP, 4.98–6.04 h) were also found to show fair oxidative stability. Among the extracted and open-market salad-grade cooking oils, rapeseed oil (IP, 4.10 h) and soybean oil (IP, 4.00 h) showed the highest oxidative stability, whereas Salicornia bigelovii oil (IP, 1.40 h) was the least stable. The induction periods of typical fat products ranged from 2.59 to 9.20 h. CV for four determinations were <5.2% for shortening and vanaspati products and <4.3% for various vegetable oils, margarine, butter, and typical fat products. Rancimat IP values obtained at 110, 120, and 130°C were 40–46, 20–25, and 9–13% of active oxygen method values, respectively, corresponding to a decrease in Rancimat IP by a factor of 1.99 with each 10°C increase in temperature. Similarly, in the temperature range 100–160°C, an increase of 10°C decreased the Rancimat IP by a factor of 1.99  相似文献   

7.
A new monomer containing imide linkages, bis[4-(p-phenoxybenzoyl)-1,2-benzenedioyl]-N,N,N′,N′-4,4′-diaminodiphenyl ether (BPBDADPE), was prepared by the Friedel–Crafts reaction of bis(4-chloroformyl-1,2-benzenedioyl)-N,N,N′,N′-4,4′-diaminodiphenyl ether (BCBDADPE) with diphenyl ether (DPE). Novel poly(aryl ether ketone)s containing imide linkages in the main chains (PEK-I) were synthesized by electrophilic Friedel–Crafts solution copolycondensation of terephthaloyl chloride (TPC) with a mixture of DPE and BPBDADPE. The polymers were characterized by different physico-chemical techniques. The polymers with 10–40 mol% BPBDADPE are semicrystalline and had increased T gs over commercially available poly(ether ether ketone) (PEEK) and poly(ether ketone ketone) (PEKK) (70/30) due to the incorporation of imide linkages in the main chains. The polymers IV and V with 30–40 mol% BPBDADPE had not only high T gs of 182–183 °C, but also moderate T ms of 341–343 °C, having good potential for melt processing and exhibited high thermal stability and good resistance to common organic solvents.  相似文献   

8.
A comprehensive compositional and characterization study was carried out on five seed oils from varieties of the melons Citrullus lanatus and C. colocynth in order to evaluate their suitability for large-scale exploitation as edible vegetable oils. The oils were extracted by Soxhlet with a 3:1 mixture of n-hexane/2-propanol with yields that ranged from 24.8 to 30.0% (wt/wt). The refractive indices and relative densities of the oils fell within the narrow ranges of 1.465–1.469 and 0.874–0.954 g/cm3, respectively. Saponification values ranged between 182.1 and 193.8 mg KOH/g, whilst iodine values (IV) ranged from 95.8 to 124.0 (Wijs). The ranges of the values for free fatty acid (AV), 1.2–4.0 mg KOH/g, peroxide (PV), 1.1–10.9 meq/kg and p-anisidine (p-AV), 0.2–9.0, indicated that secondary oxidation products were barely present. GC analysis gave total unsaturation contents of 67.93–82.36%, with linoleic acid (18:2) being the dominant fatty acid (55.21–66.85%). The GC results agreed closely with those from proton NMR analysis of the fatty acid classes. The physicochemical and compositional properties determined in this study show that the qualities of the test Cucurbitacea seed oils are highly comparable to those of soybean, sunflower and groundnut seed oils. Therefore, the test melon seed oils could be developed into commercial products to serve as alternate vegetable oils in Southern and West Africa, the regions where these melons grow.  相似文献   

9.
Two Rancimat evaluation modes, the induction period (IP), and the time needed to achieve a selected difference in conductivity (tΔK) were compared for assessing relative stability of anchovy, sardine, and hake liver oils. Mean coefficients of variation were 2.5 and 2.4% for IP and tΔK values, respectively, for oils oxidized in the range 55–90°C. Natural logarithms of IP and tΔK values varied linearly with temperature (P<0.001). A linear relationship (r=0.999) was established between the IP and tΔK values (P<0.001). Relative oxidative stability of fish oils was determined with the same degree of confidence by either IP or tΔK values.  相似文献   

10.
This study evaluated the capabilities of a handheld mid-infrared (MIR) spectrometer combined with multivariate analysis to characterize oils, monitor chemical processes occurring during oxidation, and to determine fatty acid composition. Vegetable oils (corn, peanut, sunflower, safflower, cottonseed, and canola) were stored at 65 °C for 30 days to accelerate oxidation reactions. Aliquots were drawn at 5 day intervals and analyzed by benchtop and portable handheld mid-infrared devices (4,000–700 cm−1) and reference methods (IUPAC 2301 [1], 2302 [1]; AOCS Cd 8-58 [2]; and Shipe 1979 [3]). PLSR and soft independent modeling of class analogy (SIMCA) models were developed for oil classification and estimation of oil stability parameters. Models developed from MIR spectra obtained with a benchtop spectrometer equipped with a 3-bounce ATR device resulted in superior discriminative performances for classifying oils as compared to those obtained from handheld spectra (single-bounce ATR). Models developed from reference tests and handheld spectra showed prediction errors (SECV) of 1 meq/kg for peroxide value, 0.09% for acid value and 2% for determination of unsaturated fatty acids in different oils. Spectral regions ~3,012–2,850 cm−1 (C–H stretching bands/shoulders of fatty acids), ~1,740 cm−1 (C=O stretching of esters), and ~1,114 cm−1 (–C–O stretching) were found to be important for prediction. Handheld-FTIR instruments combined with multivariate-analysis showed promise for determination of oil quality parameters. Portability and ease-of-use makes the handheld device a great alternative to traditional methods.  相似文献   

11.
Investigations about the Autoxidation of Fats and Oils by a Chemiluminescence Method The oxidative stability of different oils was determined by a Rancimat apparatus. Samples of oils obtained at definite time intervals from the Rancimat were measured by a chemiluminescence method. Thereby the hydroperoxides formed during the first step of the autoxidation and radicals react in presence of a catalyst with Luminol. The results are presented in dependence of the storage time and discussed with relation to the results of the Rancimat apparatus. There is a good correlation between both methods (r = 0.9865).  相似文献   

12.
The study investigates the impact of operating parameters such as temperature (90, 100, 110, 120 °C), airflow rate (10, 15, 20 L h−1), and sample weight (3, 6, 9 g) on the oxidative stability of cold-pressed camelina and hemp seed oils using the Rancimat apparatus. Conducted analysis indicates a significant influence of temperature on oils' induction time. Moreover, higher airflows should be selected at high analysis temperatures. Based on the calculated parameters of the oxidation kinetics, it was shown that hemp oil has higher activation energy values than camelina oil. Response surface methodology (RSM) indicates that to minimize the determination time of camelina oil oxidation, the following analysis conditions should be selected: sample weight (SW) = 33.5 g, airflow (AF) = 20 L h−1, and temperature (T) = 120 °C. However, for hemp oil, these parameters should be SW = 5.56 g, AF = 15 L h−1, T = 120 °C. Sample mass does not significantly impact oils induction time, which depends mainly on the temperature and airflow. Practical applications: The conducted research shows that the parameters of the cold-pressed camelina and hemp oils oxidative stability have to be determined experimentally. The determined parameters for assessing the oxidative stability will reduce the analysis time and the possibility of interpolating the obtained result at different temperatures and analysis parameters.  相似文献   

13.
Coconut (Cocos nucifera) contains 55–65% oil, having C12:0 as the major fatty acid. Coconut oil has >90% saturates and is deficient in monounsaturates (6%), polyunsaturates (1%), and total tocopherols (29 mg/kg). However, coconut oil contains medium chain fatty acids (58%), which are easily absorbed into the body. Therefore, blends of coconut oil (20–80% incorporation of coconut oil) with other vegetable oils (i.e. palm, rice bran, sesame, mustard, sunflower, groundnut, safflower, and soybean) were prepared. Consequently, seven blends prepared for coconut oil consumers contained improved amounts of monounsaturates (8–36%, p < 0.03), polyunsaturates (4–35%, p < 0.03), total tocopherols (111–582 mg/kg, p < 0.02), and 5–33% (p < 0.02) of DPPH (2,2-diphenyl-1-picrylhydrazyl free radicals) scavenging activity. In addition, seven blends prepared for non-coconut oil consumers contained 11–13% of medium chain fatty acids. Coconut oil + sunflower oil and coconut oil + rice bran oil blends also exhibited 36.7–89.7% (p < 0.0005) and 66.4–80.5% (p < 0.0313) reductions in peroxide formation in comparison to the individual sunflower oil and rice bran oil, respectively. It was concluded that blending coconut oil with other vegetable oils provides medium chain fatty acids and oxidative stability to the blends, while coconut oil will be enriched with polyunsaturates, monounsaturates, natural antioxidants, and a greater radical scavenging activity.  相似文献   

14.
The phytosterol, tocopherol, and tocotrienol profiles for mkukubuyo, Sterculia africana, manketti, Ricinodendron rautanenni, mokolwane, Hyphaene petersiana, morama, Tylosema esculentum, and moretologa-kgomo, Ximenia caffra, seed oils from Botswana have been determined. Normal-phase HPLC analysis of the unsaponifiable matter showed that among the selected oils, the most abundant tocopherol and tocotrienol were γ-tocopherol (2232.99 μg/g) and γ-tocotrienol (246.19 μg/g), detected in manketti and mkukubuyo, respectively. Mokolwane oil, however, contained the largest total tocotrienol (258.47 μg/g). Total tocol contents found in manketti, mokolwane, mkukubuyo, morama, and moretologa-kgomo oils were 2238.60, 262.40, 246.20, 199.10, and 128.0 μg/g, respectively. GC–MS determination of the relative percentage composition of phytosterols showed 4-desmethylsterols as the most abundant phytosterols in the oils, by occurring up to 90% in moretologa-kgomo, mkukubuyo, and manketti seed oils, with β-sitosterol being the most abundant. Mokolwane seed oil contained the largest percentage composition of 4,4-dimethylsterols (45.93%). Besides 4-desmethylsterols (75%), morama oil also contained significant amounts of 4,4-dimethylsterols and 4-monomethylsterols (15.72% total). GC–MS determination of the absolute amounts of 4-desmethylsterols, after SPE fractionation of the unsaponifiable matter, confirmed that β-sitosterol was the most abundant phytosterol in the test seed oils, with manketti seed oil being the richest source (1326.74 μg/g). The analysis showed total 4-desmethylsterols content as 1617.41, 1291.88, 861.47, 149.15, and 109.11 μg/g for manketti, mokolwane, mkukubuyo, morama, and moretologa-kgomo seed oils, respectively.  相似文献   

15.
Interprovenance variation was examined in the composition of Moringa oleifera oilseeds from Pakistan. The hexane-extracted oil content of M. oleifera seeds harvested in the vicinity of the University of Agriculture, Faisalabad (Punjab, Pakistan), Bahauddin Zakariya University (Multan, Pakistan), and the University of Sindh, Jamshoro (Sindh, Pakistan), ranged from 33.23 to 40.90%. Protein, fiber, moisture, and ash contents were found to be 28.52–34.00, 6.52–7.50, 5.90–7.00, and 6.52–7.50%, respectively. The physical and chemical parameters of the extracted M. oleifera oils were as follows: iodine value, 67.20–71.00; refractive index (40°C), 1.4570–1.4637; density (24°C), 0.9012–0.9052 mg/mL; saponification value, 177.29–184.10; unsaponifiable matter, 0.60–0.83%; color (1-in. cell), 1.00–1.50 R+20.00–30.00Y; smoke point, 198–202°C; and acidity (% as oleic acid), 0.50–0.74. Tocopherols (α, γ, and δ) accounted for 114.50–140.42, 58.05–86.70, and 54.20–75.16 mg/kg, respectively, of the oils. The induction periods (Rancimat, 20 L/h, 120°C) of the crude oils were 9.64–10.66 h and were reduced to 8.29–9.10 h after degumming. Specific extinctions at 232 and 270 nm were 1.80–2.50 and 0.54–1.00, respectively. The major sterol fractions of the oils were campesterol (14.13–17.00%), stigmasterol (15.88–19.00%), β-sitosterol (45.30–53.20%), and ͤ5-avenasterol (8.84, 11.05%). The Moringa oils were found to contain high levels of oleic acid (up to 76.00%), followed by palmitic, stearic, behenic, and arachidic acids up to levels of 6.54, 6.00, 7.00, and 4.00%, respectively. Most of the parameters of M. oleifera oils indigenous to different agroclimatic regions of Pakistan were comparable to those of typical Moringa seed oils reported in the literature. The results of the present analytical study, compared with those for different vegetable oils, showed M. oleifera to be a potentially valuable oilseed crop.  相似文献   

16.
The induction periods for the peroxidation of various fish oils at 55–90°C were studied by the Rancimat test. The natural logarithms of the induction periods varied linearly with respect to temperature, with a mean coefficient of −7.5×10−2°C−1, which was significantly different from that reported for vegetable oils. The activation energy for the formation of volatile acids had a mean value of 38.9 kJ/mol and was independent of the fish oil source. Peroxide formation under Rancimat test conditions followed first-order kinetics. The same kinetics were followed under Schaal Oven test conditions (forced-air oven, 60°C). On the basis of the results obtained, the Rancimat test appears to be useful in determining the relative stabilities of fish oils without the change in peroxide decomposition kinetics that may occur at elevated temperatures.  相似文献   

17.
Using advanced electron paramagnetic resonance techniques (EPR), oxidation of crude vegetable oils and their components (fatty acids and triglycerides) by radicals generated from hydrogen peroxide was investigated. The correlation rotational times were determined allowing us to characterize radicals formed during edible oils oxidation. Additionally 1H- and 14N-hyperfine coupling constants differentiate the fatty acids dependently on their unsaturation. The acids with a higher number of unsaturated bonds exhibit higher AN values of PBN/·lipid adduct. The waste oil with high free fatty acids content underwent the oxidation reaction more efficiently, however due to saturation and the high content of the fatty acids the carbon-centered radicals formed (upon hydrogen peroxide radicals) and their PBN (N-tert-butyl-α-phenylnitrone) adducts were less stable. The antioxidant effect was dependent on the amount of α-tocopherol added. In small amounts of up to 0.35 mg/1 g of fatty acid or triglyceride, it inhibited the creation of PBN/·lipid adducts while with higher amounts it intensified adduct formation. The α-tocopherol (AT) addition influence was also studied as spin scavenging dependence and indicated that any addition of the antioxidant in the investigated samples led to free radical scavenging and the effect increased with the increase in AT content.  相似文献   

18.
A new method for the determination of copper(II) and iron(III) in liquid edible oils which does not require a digestion step was developed. The suggested method involves extraction of metals with [N,N′-bis(salicylidene)-2,2′-dimethyl-1,3-propanediaminato] (LDM) followed by flame atomic absorption spectrometry measurement. As a first step, metal complexes of copper(II) and iron(III) ions with LDM were investigated spectrophotometrically. After the analytical properties and experimental conditions of the complexation had been determined, these findings were used to determine the extraction period as a second step. Experimental conditions were optimized using a central composite design. Optimum conditions for Cu(II) and Fe(III) extractions from oil were found: the ratios of the volume of Schiff base solution used to the mass of oil (V LDM/m oil; mL g−1) were 0.76 and 1.19 mL g−1, the stirring times were 73 and 67 min, and the temperatures were 31 and 28 °C, respectively. The developed extraction and determination method was tested on certified reference materials; the recovery percentages were found to be 99.4 ± 2.8 and 100.2 ± 5.6 for Cu(II) and Fe(III), respectively. The suggested method was performed on real samples such as olive oil, sunflower oil, corn oil, canola oil and recovery values between 97.2–102.1 for Cu(II) and 94.5–98.6 for Fe(III) were determined. It was concluded that the developed method has some advantages over the common traditional method including rapidity, sensitivity, accuracy, reduced risk and cost.  相似文献   

19.
Cold-pressed oil content of Cannabis sativa (hemp) seeds from three different agro-ecological zones of Pakistan ranged from 26.90 to 31.50%. Protein, fiber, ash, and moisture content were found to be 23.00–26.50, 17.00–20.52, 5.00–7.60, and 5.60–8.50%, respectively. Results of some other physical and chemical parameters of the oil were as follows: iodine value, 154.00–165.00; refractive index (40°C), 1.4698–1.4750; density (24°C), 0.9180–0.9270 mg ml−1; saponification value, 184.00–190.00; unsaponifiable matter, 0.70–1.25%; and color (1-in cell), 0.50–0.80 R+27.00–32.00 Y. The induction period (Rancimat, 20 L h−1, 120°C) of the nondegummed and degummed oils ranged from 1.35 to 1.72 h and from 1.20 to 1.49 h, respectively. Specific extinctions at 232 and 270 nm were 3.50–4.18 and 0.95–1.43, respectively. The hemp oils investigated were found to contain high levels of linoleic acid, 56.50–60.50%, followed by α-linolenic, oleic, palmitic, stearic, and γ-linolenic acids: 16.85–20.00, 10.17–14.03, 5.75–8.27, 2.19–2.79, and 0.63–1.65%, respectively. Tocopherols (α, γ, and δ) in the nondegummed oils were found to be 54.02–60.40, 600.00–745.00, 35.00–45.60, respectively, and were reduced to 29.90–50.00, 590.00–640.00, and 30.40–39.50 mg kg−1, respectively, after degumming. The results of the present analytical study, compared with those found in the typical literature on hempseed oils, showed C. sativa indigenous to Pakistan to be a potentially valuable nonconventional oilseed crop of comparable quality.  相似文献   

20.
Simulated gastrointestinal hydrolysis of hemp seed proteins using pepsin and pancreatin followed by membrane ultrafiltration fractionation yielded fractions with peptide sizes of <1, 1–3, 3–5, and 5–10 kDa. Analysis of in vitro antioxidant properties showed that the hemp seed protein hydrolysate (HPH) exhibited a significantly weaker (p < 0.05) scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals when compared to the fractionated peptides. Metal chelation activity of the HPH was significantly greater (p < 0.05) than the activities of fractionated peptides. Fractionation of the HPH led to significant (p < 0.05) improvements in ferric reducing power, DPPH, and hydroxyl radical scavenging radical activities but decreased metal chelation capacity. Peptide fractions with longer chain lengths (3–5 and 5–10 kDa) had better metal chelation and ferric reducing power than the <1, and 1–3 kDa fractions. HPH and all the peptide fractions significantly inhibited (p < 0.05) linoleic acid oxidation when compared to the control. Glutathione (GSH) had significantly greater (p < 0.05) ferric reducing power, and scavenging of hydroxyl and DPPH radicals when compared to HPH and fractionated peptides. In contrast, HPH and peptide fractions >3 kDa had significantly higher (p < 0.05) metal chelation activity than GSH. The results show the potential use of HPH and peptide fractions of defined size for the treatment of oxidative stress-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号