首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Exact capacity distribution for dual MIMO systems in Ricean fading   总被引:1,自引:0,他引:1  
It is well known that multiple input multiple output (MIMO) systems offer the promise of achieving very high spectrum efficiencies (many tens of bit/s/Hz) in a mobile environment. The gains in MIMO capacity are sensitive to the type of channel encountered in the radio environment. To date most analytical work has concentrated on Rayleigh fading channels. Hence, in this letter we consider the capacity outage performance of MIMO systems in Ricean channels. Due to analytical complexity we concentrate on dual antenna systems (either two transmit or two receive antennas) and derive exact densities and distribution functions for the capacity.  相似文献   

2.
Wireless data traffic is expected to grow over the next few years and the technologies that will provide data services are still being debated. One possibility is to use multiple antennas at base stations and terminals to get very high spectral efficiencies in rich scattering environments. Such multiple-input/multiple-output (MIMO) channels can then be used in conjunction with scheduling and rate-feedback algorithms to further increase channel throughput. This paper provides an analysis of the expected gains due to scheduling and bits needed for rate feedback. Our analysis requires an accurate approximation of the distribution of the MIMO channel mutual information. Because the exact distribution of the mutual information in a Rayleigh-fading environment is difficult to analyze, we prove a central limit theorem for MIMO channels with a large number of antennas. While the growth in average mutual information (capacity) of a MIMO channel with the number of antennas is well understood, it turns out that the variance of the mutual information can grow very slowly or even shrink as the number of antennas grows. We discuss implications of this "channel-hardening" result for data and voice services, scheduling, and rate feedback. We also briefly discuss the implications when shadow fading effects are included.  相似文献   

3.
This paper uses a detailed model of multiple input multiple output (MIMO) systems to explore the impact of signal coupling in the receiver front end on communication capacity. The model is applied to assess the performance of a MIMO system with two transmit and receive antennas in a simulated multipath environment for different amplifier coupling levels. The results show that in practical scenarios where simple impedance matching techniques are used, the circuit coupling can reduce the signal-to-noise ratio at the receiver and therefore degrade the achievable MIMO capacity.  相似文献   

4.
Recent work has shown that multiple-input multiple-output (MIMO) systems with multiple antennas at both the transmitter and receiver are able to achieve great capacity improvement. In such systems, it is desirable to select a subset of the available antennas so as to reduce the number of radio frequency (RF) chains. This paper addresses the problem of antenna selection in correlated channels. We consider a narrowband communication system with M transmit and N receive antennas. We present the criterion for selecting the optimal L/sub t/ out of M transmit and L/sub r/ out of N receive antennas in terms of capacity maximization, assuming that only the long-term channel statistics, instead of the instantaneous channel-state information, are known. Simulations will be used to validate our theoretical analysis and demonstrate that the number of required RF chains can be significantly decreased using our proposed selection strategy, while achieving even better performance than the conventional MIMO system without antenna selection.  相似文献   

5.
Dynamics of spatial correlation and implications on MIMO systems   总被引:3,自引:0,他引:3  
The use of multiple antennas has found various applications in the area of wireless communications. One such application has recently become very popular and is referred to as the multiple-input multiple-output (MIMO) antenna system. The main idea behind MIMO is to establish independent parallel channels between multiple transmit and receive antennas. Each channel uses the same frequency, and the transmissions occur simultaneously. In such a configuration, the amount of data transmitted increases linearly with the number of parallel channels, which is what makes MIMO so popular in the wireless world. The enormous capacity offered by MIMO systems is not realizable when the parallel channels are highly correlated. The goal of this article is to highlight the correlation concept and its impact on MIMO systems. Although correlation can be defined in many dimensions, here we focus on spatial correlation, and specifically consider antenna correlations in mobile units. We provide an overview of spatial correlation and present its underlying parameters in detail. Special attention is given to mutual coupling since it has signal decorrelation and antenna gain reduction effects. We then present how correlation in a MIMO system affects the amount of data that can be transmitted (MIMO capacity) and briefly review how power should be distributed with the knowledge of correlation. Analyses indicate that in real propagation environments, the high capacity gain of MIMO systems can be realized with improved antenna selection algorithms and power allocation strategies.  相似文献   

6.
We consider large MIMO systems, where by 'large' we mean number of transmit and receive antennas of the order of tens to hundreds. Such large MIMO systems will be of immense interest because of the very high spectral efficiencies possible in such systems. We present a low-complexity detector which achieves uncoded near-exponential diversity performance for hundreds of antennas (i.e., achieves near SISO AWGN performance in a large MIMO fading environment) with an average per-bit complexity of just O(NtNr), where Nt and Nr denote the number of transmit and receive antennas, respectively. With an outer turbo code, the proposed detector achieves good coded bit error performance as well. For example, in a 600 transmit and 600 receive antennas V-BLAST system with a high spectral efficiency of 450 bps/Hz (using BPSK and rate-3/4 turbo code), our simulation results show that the proposed detector performs to within about 7 dB from capacity. This practical feasibility of the proposed high-performance, low-complexity detector could potentially trigger wide interest in the theory and implementation of large MIMO systems. We also illustrate the applicability of the proposed detector in the low-complexity detection of high-rate, non-orthogonal space-time block codes and large multicarrier CDMA (MC-CDMA) systems. In large MC-CDMA systems with hundreds of users, the proposed detector is shown to achieve near single-user performance at an average per-bit complexity linear in number of users, which is quite appealing for its use in practical CDMA systems.  相似文献   

7.
We analyze asymptotic ergodic capacity of multidimensional vector-sensor array MIMO (PMD-MIMO) channels established by the use of dual-polarized antennas in the form of 1D, 2D and/or 3D MIMO arrays. Based on the identification of the decomposition of PMD-MIMO channels into multiple independently-fading and scaled classical MIMO channels in parallel, we consequently derive corresponding asymptotic ergodic capacities analytically via tools out of free probability theory. The analysis of derived asymptotic ergodic capacity expressions in terms of antenna locus aspect ratio ?, average symbol SNR per antenna ˉ?s and cross-polar discrimination XPD as well as comparison with asymptotic ergodic capacity of classical MIMO channels present important gains in using compact multidimensional vector-sensor array MIMO systems in asymptotic regimes.  相似文献   

8.
In 4G broadband wireless communications, multiple transmit and receive antennas are used to form multiple input multiple output (MIMO) channels to increase the capacity (by a factor of the minimum number of transmit and receive antennas) and data rate. In this paper, the combination of MIMO technology and orthogonal frequency division multiplexing (OFDM) systems is analyzed for wideband transmission which mitigates the intersymbol interference and hence enhances system capacity. In MIMO-OFDM systems, the coding is done over space, time, and frequency domains to provide reliable and robust transmission in harsh wireless environment. Also, the performance of space time frequency (STF) coded MIMO-OFDM is analyzed with space time and space frequency coding as special cases. The maximum achievable diversity of STF coded MIMO-OFDM is analyzed and bit error rate performance improvement is verified by simulation results. Simulations are carried out in harsh wireless environment, whose effect is mitigated by using higher tap order channels. The complexity is resolved by employing sphere decoder at the receiver.  相似文献   

9.
在多输入多输出(MIMO)系统中,天线选择技术平衡了系统的性能和硬件开销,但大规模MI-MO系统收发端天线选择复杂度问题一直没有得到很好的解决.基于信道容量最大化的准则,采用两个二进制编码字符串分别表示发射端和接收端天线被选择的状态,提出将二进制猫群算法(BCSO)应用于多天线选择中,以MIMO系统信道容量公式作为猫群的适应度函数,将收发端天线选择问题转化为猫群的位置寻优过程.建立了基于BCSO的天线选择模型,给出了算法的实现步骤.仿真结果表明所提算法较之于基于矩阵简化的方法、粒子优化算法具有更好的收敛性和较低的计算复杂度,选择后的系统信道容量接近于最优算法,非常适用于联合收发端天线选择的大规模MIMO系统中.  相似文献   

10.
In this paper, a novel multiple antenna system framework, which combines smart antennas (SA) with multiple-input-multiple-output (MIMO) at the transmitter, is proposed. The downlink capacity of the single-user SA-MIMO wireless systems is investigated. The joint optimization problem corresponding to the capacity is deduced. After that, upper bounds of the capacity are given in general case and in the case of equal power allocation, respectively. Furthermore, in the case of equal power allocation and the same direction of departure from one transmit smart antenna to all antenna arrays at the receiver the closed-form expression of the capacity is obtained. Some numerical results are given to show that smart antennas can bring significant capacity gain for the MIMO systems due to the smart antennas gain, without additional spatial degrees of freedom, especially at high SNR with strong correlation among the MIMO channel links or at low SNR.  相似文献   

11.
This paper presents the relationship between antenna structures and the performance of two kinds of compact MIMO antennas in order to find critical factors that affect the capacity of MIMO systems. The relationship between the channel capacity and some factors (antenna efficiency, mutual coupling, correlation) are analyzed based on experimental data under indoor Rayleigh fading environment. Antenna elements mounted in two different configurations (common and separated ground plane) with antenna spacing varying, were investigated at the frequency of 2.6 GHz band experimentally. The good characteristics in the case of separated ground plane show that the proposed antennas, even with small spacing, can still achieve high capacity to combat multipath fading and deliver higher data rates. It demonstrates that multiple antennas could be mounted onto small terminal devices without much loss of capacity. It is also found that mutual coupling has positive impact which could reduce channel correlation; negative effect which could degrade antenna efficiency. In the indoor multipath-rich environment, the negative effect is dominant.  相似文献   

12.
This paper studies the ergodic capacity limits of multiple-input multiple-output (MIMO) antenna systems with arbitrary finite number of antennas operating on general fading environments. Through the use of majorization theory, we first investigate in detail the ergodic capacity of Nakagami- $m$ fading channels, for which we derive several ergodic capacity upper and lower bounds. We then show that a simple expression for the capacity upper bound is possible for high signal-to-noise ratio (SNR), which permits to analyze the impact of the channel fading parameter $m$ on the ergodic capacity. The asymptotic behavior of the capacity in the large-system limit in which the number of antennas at one or both side(s) goes to infinity, is also addressed. Results demonstrate that the capacity scaling laws for Nakagami-$m$ and Rayleigh-fading MIMO channels are identical. Finally, we employ the same technique to distributed MIMO (D-MIMO) systems undergoing composite log-normal and Nakagami fading, where we derive similar ergodic capacity upper and lower bounds. Monte Carlo simulation results are provided to verify the tightness of the proposed bounds.   相似文献   

13.
We compare the achievable throughput of time division multiple access (TDMA) multiple‐input multiple‐output (MIMO) schemes illustrated in the 3rd Generation Partnership Project (3GPP) MIMO technical report, versus the sum‐rate capacity of space‐time multiple access (STMA). These schemes have been proposed to improve the 3GPP high speed downlink packet access (HSDPA) channel by employing multiple antennas at both the base station and mobile stations. Our comparisons are performed in multi‐user environments and are conducted using TDMA such as Qualcomm's High Data Rate and HSDPA, which is a simpler technique than STMA. Furthermore, we present the unified optimal power allocation strategy for HSDPA MIMO schemes by exploiting the similarity of multiple antenna systems and multi‐user channel problems.  相似文献   

14.
Multiple input multiple output (MIMO) systems showed good utilization of channel characteristics. In MIMO systems multiple signals are transmitted using multiple antenna system. This provides each receiver the combined signals and hence, array processing techniques helps in reducing the effects of interference among them. In this paper we devise the use of pre-coded MIMO system to reduce the effects of frequency selectivity and hence, enhance the systems capacity and/or reduce the bit error rate. In this technique we introduce a temporal pre-coder on each antenna signal; this creates a deterministic multi-path signals similar to signals received when the channel is multi-path fading channel. The same antenna signal will arrive at each receiver forming orthogonal sub-space and the receiver will be simple add and delay of the received signals. Ant colony optimization is used in this paper to select the best pre-code. Results showed that we can diagonalize the channel matrix and practically eliminate the interference for frequency selective fading channel. Simulation of two transmitting two receiving antennas pre-coded MIMO system showed that the capacity can be doubled.  相似文献   

15.
Multiple-input multiple-output (MIMO) systems offer a greater capacity in comparison with systems based on single antennas. They are particularly suitable for an indoor environment. In this paper, the performance of the MIMO system (4,4) with 1 transmitter and 32 receivers, situated in an office room, was investigated. For calculations, the ray-tracing algorithm was used. With an optimal configuration, the achieved capacity was more than 3 times greater than the capacity for the system (1,1). The results were almost independent of the dielectric constant of the room walls, floor, and ceiling.  相似文献   

16.
Relaying Schemes Using Matrix Triangularization for MIMO Wireless Networks   总被引:4,自引:0,他引:4  
Multiple input multiple output (MIMO) relay networks are wireless communication systems comprising of multiple nodes, each of which is equipped with multiple antennas. Information theories have shown that using multiple nodes to simultaneously relay a message can improve the capacity of source-to-destination communications. In this paper, we propose new relaying schemes for MIMO relay networks. The major concept behind the proposed schemes is to transform each of the MIMO relay channels into an equivalent triangular channel with positive real diagonal entries. By doing so, the resultant MIMO relay channel can simultaneously offer both distributed array gain (diversity gain obtained among relay nodes) and intranode array gain (diversity gain realized by multiple antennas of individual relay node) while maintaining the maximum spatial multiplexing gain (number of parallel data pipes). Based on this concept, three relaying schemes are derived that perform QR decomposition and phase control. Numerical results confirm that at least one of the proposed schemes outperforms the amplify-and-forward and the zero-forcing relaying schemes under various conditions. Moreover, we show that ratios of noise power level at relay and destination node have a great impact on capacities.  相似文献   

17.
Multiple-input multiple output (MIMO) communication architecture has recently emerged as a new paradigm for wireless communications in rich multipath environment, which has spectral efficiencies far beyond those offered by conventional techniques. The channel capacity of the MIMO architecture in independent Rayleigh channels scales linearly as the number of antennas. However, the correlation of a real-world wireless channel may result in a substantial degradation of the MIMO architecture performance. In this letter, we investigate the MIMO channel capacity in correlated channels using the exponential correlation matrix model. We prove that, for this model, an increase in correlation is equivalent to a decrease in signal-to-noise ratio (SNR). For example, r=0.7 is the same as 3-dB decrease in SNR  相似文献   

18.
In this letter, we investigate the outage performance of multiple-input multiple-output (MIMO) maximal ratio combining (MRC) systems with unequal-power co-channel interference (CCI). Closed-form expression for the outage probability is presented. Our results are applicable to the MIMO MRC systems with arbitrary numbers of transmit and receive antennas.  相似文献   

19.
In this paper, we consider multiple‐input multiple‐output (MIMO) multi‐tone code division multiple access (MT‐CDMA) uplink transmission over multipath fading channels. The zero‐forcing vertical Bell Laboratories layered space‐time architecture (ZF V‐BLAST) algorithm and maximum ratio combining scheme are applied at the receiver. The average bit error rate (BER) expression is derived provided that the number of receive antennas is not less than that of transmit antennas. The BER expression is verified by simulations. Numerical results show that the numbers of transmit and receive antennas have significant effects on the BER performance of the considered system. Spatial and path diversity show different capabilities to improve the BER performance. The MIMO MT‐CDMA system based on the ZF V‐BLAST algorithm is capable of achieving a better BER performance and a higher capacity than the conventional MT‐CDMA system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
贾向东  陈技江  方晖  傅海阳 《信号处理》2011,27(8):1160-1165
从实际工程应用的角度出发,首先对MIMO系统中的各种假设条件做了分析,认为当MIMO信道中的各个子信道相互独立时,可以采用基带联合检测(joint detection, JD)技术实现MIMO信号的分离与合并;如果考虑实际应用场景且当MIMO系统中多根天线发送同频信号时,JD技术无法分离出细多径信号,会使得系统空分复用(space division multiplexing, SDM)增益下降。为此基于对Shannon公式和相控天线阵系统(phase-controlled antenna array , PCA)的讨论,提出了一个新颖的多天线系统-SHPCA系统,该SHPCA系统能够有效地利用相控阵天线产生的定向窄波束来实现SDM功能,提升多天线系统的性能。SHPCA系统容量可用一个三维信道容量公式来描述,空间为第三维度。与传统信道容量度量相比,该模型能更直观的反映SHPCA多天线系统的空分复用作用和收发天线配置对系统容量的影响。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号