首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For tissue engineering applications, 3-D macroporous chitosan/poly(l-lactide) (PLLA) scaffolds were prepared by the particulate-leaching method using sodium acetate as the porogen in an acidic water/dioxane solution. The stability and dispersity of chitosan on the chitosan/PLLA hybrid scaffolds were determined by measuring water contact angles, establishing crystallinity using X-ray diffraction, and using eosin staining to observe the chitosan under a light microscope. The porous structure of the particulate-leached chitosan/PLLA scaffolds was investigated in terms of pore morphology, interconnectivity, etc. by using scanning electron microscopy. Chitosan/PLLA scaffolds produced by particulate-leaching showed a highly porous structure and improved stability and dispersity of chitosan as compared to pure PLLA and chitosan-coated PLLA scaffolds. The highly porous structure that resulted from a high concentration of chitosan improved the efficiency of cell adhesion after culturing cells for 4?h. After 48?h, the cultured cells showed increased cell proliferation on the hybrid scaffolds. Thus, particulate-leached chitosan/PLLA scaffolds can be applied to tissue engineering of various types, including the industrial membrane field.  相似文献   

2.
The purpose of this study was to improve the biocompatibility of glutaraldehyde (GA) cross‐linked chitosan coated collagen scaffold for cartilage tissue regeneration. In order to prevent the potential toxicity of GA, we treated the designed scaffold with either glutamic acid or glycine. Amino acid treated scaffolds were characterized by scanning electron microscopy (SEM) techniques. Afterward, chondrocyte interaction with the composite scaffold was investigated assessing cell adhesion and proliferation using Hoechst staining and MTT cell proliferation assay, respectively. The SEM analyses of the scaffolds’ surface and cross‐section confirmed the adhesion of amino acids on the surface of the scaffolds. We also observed that scaffolds’ porosity was reduced due to the coverage of the pores by chitosan and amino acids, leading to low porosity. The use of amino acid improved the chondrocyte adhesion and proliferation inside the scaffolds’ pores when cells were cultured onto the chitosan‐coated collagen scaffolds. Overall, our in vitro results suggest the use of amino acid to improve the biocompatibility of natural polymer composite scaffold being crosslinked with glutaraldehyde. Such scaffold has improved mechanical properties; biocompatibility thus may be useful for tissue regeneration such as cartilage.
  相似文献   

3.
This study focuses on the development of an efficient delivery modes designed for chondroitin sulfate (CS) for application in cartilage tissue engineering. Novel three-dimensional (3-D) scaffold fabricated from natural polymers such as chitosan and gelatin blended with chondroitin sulfate (CGC) were synthesized using cryogelation technology. Other methods to deliver CS were also tried, which included incorporation into microparticles for sustained release and embedding the CS loaded microparticles in CG (chitosan-gelatin) cryogel scaffold. Novel CGC scaffolds were characterized by rheology, scanning electron microscopy (SEM), and mechanical assay. Scaffolds exhibited compression modulus of 50 KPa confirming the utility of these scaffolds for cartilage tissue engineering. Primary goat chondrocytes were used for the in vitro testing of all the delivery modes. So this study shows that CS microparticles when given freely with matrix (chitosan–gelatin) or embedded into scaffold has potential to enhance chondrocyte proliferation together with improved matrix production than in control without microspheres.  相似文献   

4.
利用冷冻干燥法制备出用于骨和软骨组织工程的壳聚糖-明胶/溶胶凝胶生物玻璃(CS-Gel/SGBG)仿生型复合多孔支架,并进行了孔隙率的测定和显微形貌的观察;探讨了各组分不同用量对CS-Gel/SGBG复合支架显微结构的影响以及复合支架在模拟生理体液中的仿生矿化性能。研究表明,通过调节各组分的不同用量,可以制备出三维连通的复合多孔支架,且孔隙率达到90%以上;在模拟生理体液中浸泡后发现CS-Gel/SGBG支架表面有大量结晶态类骨碳酸羟基磷灰石生成,表明复合支架有良好的生物矿化性能。  相似文献   

5.
Hydroxyapatite (HA) is a well-known biocompatible bone substitute. Porous HA is more resorbable and osteoconductive compared with non-porous HA, and has been studied both experimentally and clinically. However, the mechanical strength of porous HA scaffolds is known to be weak. In this study, we developed a porous HA scaffold coated with a synthetic biodegradable polymer, poly(l-lactic acid) (PLLA), to strengthen the scaffold. PLLA-coated HA pellets were used to investigate the in vitro proliferation and alkaline phosphatase (ALP) activity of osteoblasts. PLLA-coated porous HA scaffolds were observed using scanning electron microscopy to investigate surface characteristics, porosity, and mechanical strength. PLLA coating concentration varied from 2 to 10 wt%. Osteoblast proliferation was higher in HA samples coated with PLLA compared with non-coated. ALP activity was highest on 8 wt% PLLA-coating after 3 days and on 4 wt% and 6 wt% PLLA after 9 and 12 days. Porous HA scaffolds with higher concentrations of PLLA were found to have a smoother, flatter surface. This enhanced proliferation and attachment of osteoblasts onto the porous HA scaffold. PLLA solution at a concentration of 10 wt% decreased scaffold porosity to half that of HA scaffolds with no PLLA coating. Scaffold mechanical strength was increased two-fold with a PLLA concentration of 2 wt%. Based on in vitro experimentation, it can be concluded that PLLA-coating on porous HA scaffolds enhances both the biocompatibility and the mechanical strength.  相似文献   

6.
The aim of this work was to prepare the scaffolds of pure poly (L-lactic acid) 3% (w/v), pure chitosan 3% (w/v), and PLLA/chitosan blend (1:5) 3% (w/v) using TIPS method and investigate their properties and application in tissue engineering. An in vitro degradation study of scaffolds showed the addition of chitosan to PLLA not only increased its degradation rate, but also slowed down its pH value reduction. Addition of chitosan to PLLA increased hydrophilicity, porosity, compressive properties, and cell viability of the scaffolds. The results indicate that among all scaffolds, the most appropriate candidate for tissue engineering is PLLA/chitosan blend.  相似文献   

7.
A gelatin-based hydrogel scaffold with highly uniform pore size and biocompatibility was fabricated for cartilage tissue engineering using microfluidic 3D-foaming technology. Mainly, bubbles with different diameters, such as 100 μm and 160 μm, were produced by introducing an optimized nitrogen gas and gelatin solution at an optimized flow rate, and N2/gelatin bubbles were formed. Furthermore, a cross-linking agent (1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide, EDC) was employed for the cross-linking reaction of the gelatin-based hydrogel scaffold with uniform bubbles, and then the interface between the close cells were broken by degassing. The pore uniformity of the gelatin-based hydrogel scaffolds was confirmed by use of a bright field microscope, conjugate focus microscope and scanning electron microscope. The in vitro degradation rate, mechanical properties, and swelling rate of gelatin-based hydrogel scaffolds with highly uniform pore size were studied. Rabbit knee cartilage was cultured, and its extracellular matrix content was analyzed. Histological analysis and immunofluorescence staining were employed to confirm the activity of the rabbit knee chondrocytes. The chondrocytes were seeded into the resulting 3D porous gelatin-based hydrogel scaffolds. The growth conditions of the chondrocyte culture on the resulting 3D porous gelatin-based hydrogel scaffolds were evaluated by MTT analysis, live/dead cell activity analysis, and extracellular matrix content analysis. Additionally, a dynamic culture of cartilage tissue was performed, and the expression of cartilage-specific proteins within the culture time was studied by immunofluorescence staining analysis. The gelatin-based hydrogel scaffold encouraged chondrocyte proliferation, promoting the expression of collagen type II, aggrecan, and sox9 while retaining the structural stability and durability of the cartilage after dynamic compression and promoting cartilage repair.  相似文献   

8.
This work addresses the preparation of 3D porous scaffolds of blends of chitosan and poly(l-lactic acid), CHT and PLLA, using supercritical fluid technology. Supercritical assisted phase-inversion was used to prepare scaffolds for tissue engineering purposes. The physicochemical and biological properties of chitosan make it an excellent material for the preparation of drug delivery systems and for the development of new biomedical applications in many fields from skin to bone or cartilage regeneration. On the other hand, PLLA is a synthetic biodegradable polymer widely used for biomedical applications. Supercritical assisted phase-inversion experiments were carried out in samples with different polymer ratios and different polymer solution concentrations. The effect of CHT:PLLA ratio and polymer concentration and on the morphology and topography of the scaffolds was assessed by SEM and Micro-CT. Infra-red spectroscopic imaging analysis of the scaffolds allowed a better understanding on the distribution of the two polymers within the matrix. This work demonstrates that supercritical fluid technology constitutes a new processing technology, clean and environmentally friendly for the preparation of scaffolds for tissue engineering using these materials.  相似文献   

9.
This work addresses the preparation of 3D porous scaffolds of blends of chitosan and poly(l-lactic acid), CHT and PLLA, using supercritical fluid technology. Supercritical assisted phase-inversion was used to prepare scaffolds for tissue engineering purposes. The physicochemical and biological properties of chitosan make it an excellent material for the preparation of drug delivery systems and for the development of new biomedical applications in many fields from skin to bone or cartilage regeneration. On the other hand, PLLA is a synthetic biodegradable polymer widely used for biomedical applications. Supercritical assisted phase-inversion experiments were carried out in samples with different polymer ratios and different polymer solution concentrations. The effect of CHT:PLLA ratio and polymer concentration and on the morphology and topography of the scaffolds was assessed by SEM and Micro-CT. Infra-red spectroscopic imaging analysis of the scaffolds allowed a better understanding on the distribution of the two polymers within the matrix. This work demonstrates that supercritical fluid technology constitutes a new processing technology, clean and environmentally friendly for the preparation of scaffolds for tissue engineering using these materials.  相似文献   

10.
The methods of co-electrospinning and surface hydrolysis have been used for improving hydrophilicity of Poly(l-lactide) (PLLA), while most of them resulted in high shrinkage and changed mechanical properties of bulk polymers. In this study, we modify PLLA electrospun scaffolds by grafting chitosan by aminolysis technology. The results showed that the amount of grafted chitosan on fibrous scaffolds could be adjusted by controlling aminolysis time, and the hydrophilicity of scaffolds was dependent on the amount of grafted chitosan. Water contact angle of scaffolds were changed from 138.3° to 0°. Characteristic analysis of scaffolds indicated that aminolysis method did not affect the porous structure. The density of the modified scaffolds was between 0.48 and 0.54 g/cm3 and the tensile strength was between 3.24 and 3.45 MPa, which were statistically not different as compared to unmodified scaffolds (P > 0.05). The statistical analysis of the cell culture results showed that the cell proliferation on chitosan modified PLLA scaffolds were significantly improved as compared to that on the unmodified PLLA scaffolds (P < 0.05). All of results suggest that the aminolysis method is a convenient and effective mild chemical treatment method to improve hydrophilicity and cell biocompatibility of PLLA electrospun fibrous scaffolds for tissue engineering without sacrificing other properties.  相似文献   

11.
For soft tissue engineering applications, 3-D macroporous acetylated chitosan/poly(l-lactideco-ε-caprolactone) (PLCL) scaffolds were prepared by acetylation and particulate leaching using sodium acetate in an acidic water/dioxane solution. Acetylated 5 wt% chitosan/PLCL scaffold of 90% porosity was determined and confirmed through various tests. The physiochemical properties of acetylated chitosan/PLCL hybrid scaffolds were examined by measuring water contact angles, pore morphology and interconnectivity using scanning electron microscopy (SEM), and dye release testing. In addition, mechanical properties such as tensile strength and bending stress recovery for determining the elasticity of scaffolds were measured. The fibroblast cell line NIH-3T3 was used to test relative cell affinities for the acetylated chitosan/PLCL vs. normal chitosan/PLCL films and porous scaffolds. The acetylated chitosan/PLCL films and scaffolds showed a high initial cell adhesion after 4 h of cell culture and increased cell proliferation compared to that of the control. The acetylated chitosan/PLCL scaffolds produced by particulate leaching showed a highly porous structure and improved the biocompatibility and stability of chitosan compared to that of chitosan-coated PLCL scaffolds. Thus, these scaffolds may be very useful for a variety of tissue engineering applications.  相似文献   

12.
Silk fibroin–chitosan blend is reported to be an attractive scaffold material for tissue engineering applications. In our earlier study, we developed a scaffold having an optimal silk fibroin–chitosan blend ratio of 80:20 and proved its potentiality for cartilage tissue engineering applications. Glucosamine is one of the major structural components of cartilage tissue. The present work investigates the effect of glucosamine components on the physicochemical and biocompatibility properties of this scaffold. To this end, varied amounts of glucosamine were added to silk fibroin–chitosan blend with the aim of improving various scaffold properties. The addition of glucosamine components did not show any significant change in physicochemical properties of silk fibroin–chitosan blend scaffolds. The composite scaffold showed an open pore structure with desired pore size and porosity. However, cell culture study using human mesenchymal stem cells derived from umbilical cord blood revealed an overall increase in cell supportive properties of glucosamine-added scaffolds. Cell viability, cell proliferation and glycosaminoglycan assays confirmed enhanced cell viability and proliferation of mesenchymal stem cells. Thus, this study demonstrated the beneficial effect of glucosamine on improving the cell supportive property of silk fibroin–chitosan blend scaffolds making it more potential for cartilage tissue regeneration. To the best of our knowledge, this is the first report on the study of glucosamine-added silk fibroin–chitosan blend porous scaffolds seeded with mesenchymal stem cells derived from umbilical cord blood.  相似文献   

13.
Articular cartilage has poor ability to heal once damaged. Tissue engineering with scaffolds of polymer hydrogels is promising for cartilage regeneration and repair. Polymer hydrogels composed of highly hydrated crosslinked networks mimic the collagen networks of the cartilage extracellular matrix and thus are employed as inserts at cartilage defects not only to temporarily relieve the pain but also to support chondrocyte proliferation and neocartilage regeneration. The biocompatibility, biofunctionality, mechanical properties, and degradation of the polymer hydrogels are the most important parameters for hydrogel‐based cartilage tissue engineering. Degradable biopolymers with natural origin have been widely used as biomaterials for tissue engineering because of their outstanding biocompatibility, low immunological response, low cytotoxicity, and excellent capability to promote cell adhesion, proliferation, and regeneration of new tissues. This review covers several important natural proteins (collagen, gelatin, fibroin, and fibrin) and polysaccharides (chitosan, hyaluronan, alginate and agarose) widely used as hydrogels for articular cartilage tissue engineering. The mechanical properties, structures, modification, and structure–performance relationship of these hydrogels are discussed since the chemical structures and physical properties dictate the in vivo performance and applications of polymer hydrogels for articular cartilage regeneration and repair. © 2012 Society of Chemical Industry  相似文献   

14.
To improve the properties of chitosan (CS) and poly(L‐lactic acid) (PLLA) and obtain fully biodegradable materials, CS‐g‐PLLA copolymers were prepared using 1‐(3‐Dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride (EDC)/N‐hydroxyl succinimide (NHS) as a coupling agent. The copolymers were characterized by Fourier transform infrared analysis (FTIR), 1H nuclear magnetic resonance (1H NMR), elemental analysis, differential scanning calorimetry (DSC), X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The results obtained by FTIR and 1H NMR showed that CS and PLLA were grafted successfully via an amide bond. DSC and XRD results showed that the thermal stability of CS had been significantly improved by grafting PLLA to the molecular chains of CS and the crystallinity of the CS‐g‐PLLA copolymers decreased significantly. Elemental analysis showed that the achieved the maximum degree of substitution of PLLA was 60.88%, while the concentration of CS was 2 mg/mL, the PLLA molecular weight was 10,000, and the EDC/NHS ratio was 2:1. Images from SEM demonstrated that the copolymers had a spherical shape and smooth surface. Moreover, the products were well dispersed without any aggregation. POLYM. ENG. SCI., 56:1432–1436, 2016. © 2016 Society of Plastics Engineers  相似文献   

15.
The aim of this research was to evaluate the mechanical properties, biocompatibility, and degradation behavior of scaffolds made of pure hydroxyapatite (HA) and HA-modified by MnO2 for bone tissue engineering applications. HA and MnO2 were developed using sol-gel and precipitation methods, respectively. The scaffolds properties were characterized using X-ray diffraction (XRD), Fourier transform spectroscopy (FTIR), scanning electron microcopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The interaction of scaffold with cells was assessed using in vitro cell proliferation and alkaline phosphatase (ALP) assays. The obtained results indicate that the HA/MnO2 scaffolds possess higher compressive strength, toughness, hardness, and density when compared to the pure HA scaffolds. After immersing the scaffold in the SBF solution, more deposited apatite appeared on the HA/MnO2, which results in the rougher surface on this scaffold compared to the pure HA scaffold. Finally, the in vitro biological analysis using human osteoblast cells reveals that scaffolds are biocompatible with adequate ALP activity.  相似文献   

16.
Polyblend fibrous scaffolds in mass ratios of 100/0, 90/10, 80/20, and 70/30 from poly(L ‐lactide) (PLLA) and poly(?‐caprolactone) (PCL) for cartilage tissue engineering were prepared in three steps: gelation, solvent exchanging, and freeze‐drying. Effects of the blend ratio, the exchange medium, and the operating temperature on the morphology of scaffolds were investigated by SEM. PLLA/PCL scaffolds presented an ultrafine fibrous network with the addition of a “small block” structure. Smooth and regular fibrous networks were formed when ethanol was used as the exchange medium. Properties of the scaffolds, such as thermal and mechanical properties, were also studied. The results suggested that the compressive modulus declined as PCL amount increased. The incorporation of PCL effectively contributed to reduce the rigidity of PLLA. Bovine chondrocytes were seeded onto PLLA/PCL scaffold. Cells attached onto the fibrous network and their morphology was satisfactory. This polyblend fibrous scaffold will be a potential scaffold for cartilage tissue engineering. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1676–1684, 2004  相似文献   

17.
Poly(L ‐lactic acid) (PLLA) is one of the most studied synthetic biodegradable polymeric materials as a bone graft substitute. Taking into account the osteoconductive property of hydroxyapatite (HAp), we prepared fibrous matrices of PLLA without and with HAp particles in amounts of 0.25 or 0.50% (w/v, based on the volume of the base 15% w/v PLLA solution in 70:30 v/v dichloromethane/tetrahydrofuran). These fibrous matrices were assessed for their potential as substrates for bone cell culture. The presence of HAp in the composite fibre mats was confirmed using energy dispersive X‐ray spectroscopy mapping. The average diameters of both neat PLLA and PLLA/HAp fibres, as determined using scanning electron microscopy, ranged between 2.3 and 3.5 µm, with the average spacing between adjacent fibres ranging between 5.7 and 8.5 µm. The porosity of these fibrous membranes was high (ca 97–98%). A direct cytotoxicity evaluation with L929 mouse fibroblasts indicated that the neat PLLA fibre mats released no substance at a level that was toxic to the cells. The presence of HAp particles at 0.50% w/v in the PLLA fibrous scaffolds not only promoted the attachment and the proliferation of MC3T3‐E1 mouse pre‐osteoblastic cells, but also increased the expression of osteocalcin mRNA and the extent of mineralization after the cells had been cultured on the scaffolds for 14 and 21 days, respectively. The results obtained suggested that the PLLA/HAp fibre mats could be materials of choice for bone tissue engineering. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
Random nanofibrous composite scaffolds of PVA/PCL bilayer were fabricated by electrospinning method. The bilayer nanofibrous scaffolds were subjected to detailed structural, morphological, chemical, and thermal analysis using XRD, SEM, FTIR, and DSC. Morphological investigations revealed that the prepared nanofibers have uniform morphology and the average fiber diameters for bilayer samples A, B, and C are 203, 252, and 244 nm, respectively. The obtained scaffolds have a porous structure with porosity of 77, 89.2, and 78.3 % for bilayer samples A, B, and C, respectively. FTIR analysis ensured complete evaporation of solvent and formation of non-interactive bilayers. Biocompatibility of the membranes was investigated by studying the adhesion of mouse NIH 3T3 fibroblasts for 72 h, and its enhanced adhesion and proliferation proved its mettle as a potential scaffold for tissue engineering applications.  相似文献   

19.
In this study, chitosan/polylactide scaffolds reinforced with nano-calcium phosphate (average crystallite size of 16.5?nm) (CP) were fabricated to create a material with excellent properties for bone tissue engineering applications via freeze-casting method. The structural and mechanical properties of nanocomposite scaffolds were studied by increasing amount of chitosan/poly lactide ratio and nano-CP content in both dry and hydrate states, which reflected the exact status of scaffolds in a real biomechanical environment. The morphologies of the nanocomposite scaffolds were viewed using scanning electron microscopy (SEM) and all the scaffolds exhibited a high porosity (up to 92?%) with open pores of 38?C387???m average diameters, which decreased with increased chitosan/polylactide ratio and nano-CP content. Also, SEM photograph of the cross-sectional area of the scaffold showed nano-CP was dispersed all over the polymer matrix thoroughly. The results of mechanical tests showed that the compressive modulus (E) and compressive stress (??) enhanced, when chitosan and nano-CP increased. X-ray diffraction analysis indicated typical chitosan, polylactic acid and nano-CP peaks and showed that the increase in nano-CP weight percentage increased its peak intensities. In addition, the effect of pore-size distributions of the scaffolds with the same composition was studied in relation to mechanical properties. The results showed substantial differences in the pore-size distributions of scaffolds with the same composition prepared, which have no effect on their dry states.  相似文献   

20.
In this study, biomimetic scaffolds were designed to investigate calcium phosphate formation via a double diffusion mechanism within a gelatin/chitosan hydrogel in biological pH and temperature. Three types of samples with initial percentages of chitosan (20, 30 and 40 wt. %) were prepared. Diffusion of calcium and phosphate ions through the hydrogel formed a precipitation layer. Samples were freeze dried to form porous scaffolds and soaked in glutaraldehyde to increase their mechanical properties. X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy and scanning electron microscopy (SEM) were employed to investigate the microstructure and to characterize the prepared scaffolds. Analysis of precipitation indicated the presence of brushite and hydroxyapatite. The amorphous calcium phosphate phase converted into crystalline hydroxyapatite after immersion in simulated body fluid which mimics the formation of hydroxyapatite in the human body. FTIR results suggested the presence of structural hydroxyl and phosphate bonds in the structure of the prepared scaffolds which could be due to the formation of hydroxyapatite. With increasing amount of chitosan in the composite scaffold, the water up-take ability was increased from 380 to 660 %, yield strength and Young’s modulus slightly decreased and the crystalinity of the precipitated phase increased. Mechanical properties obtained from the samples were in the range of cancellous bone. MTT assay results and alkaline phosphatase activity showed prepared scaffolds had proper biocompatibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号