首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 688 毫秒
1.
Forty-two elements in four standard reference materials and oyster and cockle tissue were analysed by the X-ray fluorescence spectrometry (XRF) method. Comparisons between certified values for standard reference materials and those of the authors indicate that XRF is suitable for determining Ba, Br, Cu, Fe, Mn, Pb, Rb, Sr, and Zn in organic matrix. Results for As, Cd, Cr, and Ni indicate that XRF is not reliable when analysing within approximately 2 mg kg−1 of the detection limits for these elements.XRF has been used to show that cockles accumulate Fe, Hg, I, Pb, Sr, Ti and Zn and oysters accumulate Cr, Cu, Fe, La, Ni, Ti, Yb, and Zn in moderately polluted areas. Values for As, Cu, Fe, Hg, Ni, Pb, Ti and Zn have been verified using atomic absorption spectroscopy. Whilst Hg was successfully determined, its limit of detection using XRF (9 mg kg−1) is too high if results are to be compared with the commonly used health standard for Hg in edible marine biota (0.5 mg kg−1 wet wt.). XRF has the capacity however to give an accurate linear response to a broad range of elements in approximately the 0–500 mg kg−1 range and is sensitive to much higher values without further sample manipulation. Hence, XRF has potential to be employed more extensively than is presently the case for elemental monitoring in broad-ranging reconnaissance marine pollution studies.  相似文献   

2.
The concentration of metals, cadmium (Cd), lead (Pb), nickel (Ni), chromium (Cr), copper (Cu), cobalt (Co), iron (Fe), manganese (Mn), and zinc (Zn) was measured in selected samples of honey in Nigeria with a view to providing information on the regional concentration profile of metals in these honeys. The honey samples were digested with a mixture of acids and analysed for metal concentrations using atomic absorption spectrophotometry. The concentrations of metals (mg kg?1) in these honeys ranged from < 0.3 for Cd,<0.50–39.75 for Pb,<0.25–6.98 for Ni,<0.25–55.25 for Cr,<0.25–71.25 for Cu,<0.25–3.50 for Co,<5.0–163.15 for Fe,<11.0–31.75 for Mn and 1.0–31.0 for Zn. The concentrations of metals were relatively high but lower than their respective permissible limits in food except for Pb and Cu in some samples. The regional distribution patterns of metals indicated that honey samples from the Niger Delta region of Nigeria had higher mean concentrations of Ni, Cr, Co, Fe and Zn than honey samples from other regions. The honey samples from the northern region had higher mean concentrations of Pb and Cu.  相似文献   

3.
A preliminary insight into metal cycling within the urban sewer was obtained by determining both the heavy metal concentrations (Cu, Zn, Pb, Cd, Ni, Cr) in sewage and sediments, and the nature of metal-bearing particles using TEM–EDX, SEM–EDX and XRD. Particles collected from tap water, sump-pit deposits, and washbasin siphons, were also examined to trace back the origin of some mineral species. The results show that the total levels in Cu, Pb, Zn, Ni, and Cr in sewage are similar to that reported in the literature, thus suggesting that a time-averaged heavy metal fingerprint of domestic sewage can be defined for most developed cities at the urban catchment scale. Household activities represent the main source of Zn and Pb, the water supply system is a significant source of Cu, and in our case, groundwater infiltration in the sewer system provides a supplementary source of Ni and Cd. Concentrations in heavy metals were much higher in sewer sediments than in sewage suspended solids, the enrichment being due to the preferential settling of metal-bearing particles of high density and/or the precipitation of neoformed mineral phases. TEM and SEM–EDX analyses indicated that suspended solids, biofilms, and sewer sediments contained similar heavy metal-bearing particles including alloys and metal fragments, oxidized metals and sulfides. Copper fragments, metal carbonates (Cu, Zn, Pb), and oxidized soldering materials are released from the erosion of domestic plumbing, whereas the precipitation of sulfides and the sulfurization of metal phases occur primarily within the household connections to the sewer trunk. Close examination of sulfide phases also revealed in most cases a complex growth history recorded in the texture of particles, which likely reflects changes in physicochemical conditions associated with successive resuspension and settling of particles within the sewer system.  相似文献   

4.
Agricultural uses of compost usually have a positive effect on the yield of vegetable crops for human consumption. However, compost that contains heavy metals can transfer these components to soils and plants. To evaluate the contamination levels of metals in soil, compost, and edible vegetables, the Mn, Zn, Pb, Cd, Cu, and Ni total contents were measured. Metal availability in soils, as well as other variables – the pH, CEC (cation exchange capacity), total nitrogen, organic carbon, particle size distribution and mineralogy of the clay fraction – were examined in the soil samples. The analysed compost samples were produced from urban solid waste, cattle manure, and edible vegetable and tree pruning residues. The values of pH, CEC, total nitrogen, organic matter, exchangeable hydrogen and carboxylic groups were measured in the compost samples. Of the six metals examined in the soils, in general, Mn and Zn attained the highest concentrations, followed by Cu. Relatively high Mn, Zn, Cu, Cd and Pb concentrations were found in the soils. Metal concentrations extracted with DTPA were below the critical levels in soils, i.e. the levels above which toxicity is likely. In general, Zn, Pb, Cd, Cu and Ni concentrations in compost were lower than those reported by other workers, while Mn levels were within the range for this metal in compost. The results showed that there was an effect of the vegetable type (p < 0.01) for all the parameters examined. High Pb concentrations were found in lettuce and chive as compared with the tolerance limit for this metal in fresh vegetables in Brazil. Cadmium concentrations were also enhanced in the fresh vegetables compared with the typical concentrations of metals in plants. Zinc, Cu, Cd, and Ni concentrations were lower than the tolerance limits established for foods by the Brazilian legislation.  相似文献   

5.
Soybean (Glycine max (L.) Merr.) uptake of the elements, Cd, Ni, Pb, Cu, Zn and Mn, from a sewage sludge-amended Mecklenburg soil was conducted in the greenhouse. “Bragg” soybeans were grown in pots for five weeks at which time the tops and roots were sampled separately for elemental analysis. Soil samples from each pot were extracted with DTPA (diethylenetriaminepentaacetic acid) and the concentration of extractable elements correlated with the elemental content in the soybean plant. There was a significant increase in dry matter production with sludge treatment. Concentrations of Cd, Ni and Pb in the soybean shoots and roots increased from sludge-amended soil as compared to the control. The metal concentration in the soybean tissue increased with increasing levels of sludge amendment. Uptake of the heavy metals was greater by the roots than by the shoots indicating some barrier to movement of the metals from roots to shoots. The DTPA extractable Cd in sludge-amended soil increased significantly, and showed correlation to the soybean tissue metal concentrations. As for the micronutrients, Cu increased in the soybean shoot as the extractable Cu increased. There was no significant relationship between soybean tissue Zn and Mn and extractable Zn and Mn.  相似文献   

6.
This study aimed to investigate nine heavy metal concentrations (As, Cd, Cr, Pb, Cu, Fe, Zn, Mn and Ni) in water, sediment and snakehead fish (Channa striata) and to identify abnormal chromosomes in C. striata from a reservoir near an industrial factory and a reference area. Heavy metal concentrations were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). The metal concentrations in the water, sediment and C. striata samples did not exceed the standard limit of Thailand, except for Cr concentrations, which exceeded water quality standards. The concentrations of Cd, Fe, Mn and Ni in C. striata samples between the reservoir and the reference area were significantly different (p < 0.05). The diploid chromosome number of C. striata from both areas was (2n = 42). Eight types of abnormal chromosomes were identified and classified as a single-chromatid gap, a single-chromatid break, centric fragmentation, a centric gap (CG), fragmentation, deletion, single-chromatid decomposition and iso-arm fragmentation. The most frequent abnormal chromosome in the samples was CG. The percentages of abnormal chromosomes in the C. striata samples from the reservoir near the industrial factory and the reference area were significantly different (p < 0.05) at 8.44 and 1.20, respectively.  相似文献   

7.
《Urban Water Journal》2013,10(2):131-144
During wet weather, combined sewer system overflows affect the quality of water in watercourses. For planning overflows, the lowest possible load of priority substances according to Directive 2008/105/EC is crucial and the knowledge of variability in concentrations of elements in the sewer system is necessary. The behaviour of heavy metals in a sewer system was observed in the course of dry weather flow (DWF) and wet weather flow (WWF). We found, from the comparison of concentration medians for the WWF and DWF that during wet weather periods, an increase in the concentrations of As, Cr, Cd, Pb, Mn and Fe occurs in the sewer system and the effect of nonpoint sources manifests itself. Zn, Cu and Ni concentrations decreased during wet weather periods, and Hg concentrations did not significantly change. During the WWF period, a considerable nonhomogeneity of the sewage system was demonstrated.  相似文献   

8.
This study aimed to investigate contamination by heavy metals including arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), and manganese (Mn) and to conduct a cytotoxic assessment of Esomus metallicus from a gold mine area compared with that from the non-affected area. The E. metallicus samples were collected downstream of a gold mine area. The heavy metal concentrations were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The average amounts of As, Cd, Cr, Pb and Mn in water and E. metallicus samples from the gold mine area were 0.368 ± 0.009, 0.008 ± 0.006, 0.009 ± 0.001, 0.006 ± 0.002, 1.438 ± 0.058 mg/L, 0.65 ± 0.25, 0.03 ± 0.03, 2.12 ± 0.05, 0.25 ± 0.07 and 18.28 ± 6.82 mg/kg, respectively. The difference of As, Cr and Mn concentrations in E. metallicus samples between gold mine and non-affected areas was statistically significant (p < 0.05) except for Cd and Pb. The diploid chromosome number of E. metallicus from both areas was 2n = 50. There are six types of chromosomal aberrations including centric fragmentation (CF), centric gap (CG), single chromatid gap (SCG), fragmentation (F), deletion (D) and polyploidy (P). The most common chromosomal aberration type in the samples from the gold mine area was CG, and the difference in chromosomal aberration and the number of cells with chromosomal aberrations in E. metallicus between the study areas was statistically significant (p < 0.05). The percentages of chromosomal aberrations in the E. metallicus samples from gold mine and non-affected areas were 14.66 and 3.00, respectively.  相似文献   

9.
The extent of removal of Ag, Bi, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Tl and Zn and their distribution between the soluble and insoluble phases in the influent, and effluent of the activated sludge process has been studied using a pilot-scale plant operated at sludge ages of 3, 6, 9 and 12 days. Molybdenum, Tl, Co, Mn and Ni were >50% soluble in the influent settled sewage. The mean removals of the former two metals were <3% and the latter three were 35 and 50%. Silver, Bi, Cd, Cr, Cu, Pb and Zn were all <35% soluble in the influent and had substantial removals of >75%. Solubilities were greater in the effluent than the influent with the exception of Mn. The observed overall removals of Ag, Bi, Co, Ni, Pb, Tl and Zn were almost entirely due to insoluble metal removal; Cd, Cr and Cu removals had a significant contribution from soluble metal removal. Overall Mn removal appeared to be solely due to soluble metal removal.  相似文献   

10.
The topic of this study is the effect of anthropogenic metals on the geochemical quality of urban soils. This is accomplished by comparing the metal contents and associations between two alluvial soils of the lower Mississippi River Delta, freshly deposited alluvial parent materials and alluvial soils collected from a nearby urban environment. Fresh alluvium samples (n = 97) were collected from the Bonnet Carré Spillway. The urban alluvial soil samples (n = 4026) were collected from New Orleans and stratified by census tracts (n = 286). The Spillway samples tend to have less Pb and Zn than generally noted for the baseline of natural soils. Except for Mn and V, Spillway alluvium contains significantly less metal than urban soils. For Spillway samples, the median metal content (in microg g(-1)) is 4.7 Pb, 11.1 Zn, 0.7 Cd, 164 Mn, 0.8 Cr, 3.9 Ni, 3.2 V, and 3.9 Cu. For urban soils, the median metal content (in microg g(-1)) is 120 Pb, 130 Zn, 3.2 Cd, 138 Mn, 2.1 Cr, 9.8 Ni, 3.8 V, and 12.7 Cu. Metal associations also differ between Spillway alluvium and urban alluvial soils. Fresh alluvium correlation coefficients between individual metals vary from 0.87 to 0.99 (P < 10(-13)) except for Cr which ranges from 0.57 to 0.68 (P < 10(-7)). The urban soil correlation coefficients for metals and the index value are 0.40-0.98. In urban soils, Pb, Zn, Cr, and Cu are dominant metals and highly associated, with a correlation coefficient ranging from 0.83 to 0.98 (P < 10(-25)). Their strong association justifies the use of GIS to map the integrated soil metal index (sum of the medians of metals by census tract) of New Orleans. Although also positively correlated (0.40-0.68, P < 10(-10)), Cd, Mn, Ni and V differ in their distribution in the city compared to Pb, Zn, Cr and Cu. Overall, significantly higher metal values occur in the inner city and lower values occur in outlying areas. The human health impact of the mixture of metals is not well understood. This study provides empirical data about the mixture and distribution of metals in New Orleans alluvial soils. Given common technical development, especially of traffic flows in cities, similar patterns of soil metals are expected for all US cities and probably international cities as well. Primary prevention of urban metal accumulations is necessary to enhance and sustain the development of urban culture.  相似文献   

11.
Elemental contamination of Japanese women's hair from historical samples   总被引:1,自引:0,他引:1  
Japanese women's hair, which had been cut in the past and preserved was examined for the presence of 12 elements (Na, K, Mg, Ca, Sr, Mn, Fe, Cu, Zn, Hg, Pb and P). Elevated levels of Fe, Mn, Cu, Pb and Hg (inorganic mercury) were conspicuous in the samples cut in the period 1880-1929 and used as hair pieces (kamoji). The effects of washing on element concentration depended on both the method of washing and the type of element. The least effective was washing with acetone and water, compared with two other methods involving anionic or non-ionic surface active agents. The most resistant elements to washing were Pb, Hg, Cu and Zn. From the intercorrelation of element content and factor analysis, by examining the diminution of contents by washing and by comparing the detected levels with the values measured on contemporary Japanese women's hair, the contribution of exogenous contamination to hair levels was found to be very strong for Fe, Mn, Cu, Hg (inorganic mercury), and Pb, moderate for Na and Zn, and negligible for Ca, Mg, Sr, K, Hg (organic mercury), and P.  相似文献   

12.
For the first time, biological tissues (hair, nails, and skin-scales) of arsenic victims from an arsenic affected area of West Bengal (WB), India were analyzed for trace elements. Analysis was carried out by inductively coupled plasma-mass spectrometry (ICP-MS) for 10 elements (As, Se, Hg, Zn, Pb, Ni, Cd, Mn, Cu, and Fe). A microwave digester was used for digestion of the tissue samples. To validate the method, certified reference materials--human hair (GBW 07601) and bovine muscle (CRM 8414)--were analyzed for all elements. The W test was used to study the normal/log normal distribution for each element in the tissue samples. For hair (n=44) and nails (n=33), all elements show log-normal distribution. For skin-scale samples (n=11), data are not sufficient to provide the information about the trend. Geometric mean, standard error, and range for each element were presented and compared with literature values for other populations. This study reveals the higher levels of toxic elements As, Mn, Pb, and Ni in the tissue samples compared with available values in the literature. The elevated levels of these toxic metals in the tissues may be due to exposure of these elements through drinking water and food. The correlations of Mn and Ni with other essential elements, e.g. Fe, Cu, Zn, suggest that Mn and Ni may substitute for those elements in hair, nails, and skin-scales. However, correlation represents the relation between two elements only and does not take into consideration of the presence of other elements. Principle component analysis was applied to explain the behavior among the elements present in hair and nails. This study reveals that in the arsenic-affected areas of WB, the concentrations of other toxic elements in drinking water and foodstuff should be monitored to evaluate the arsenic poisoning.  相似文献   

13.
Though there are many studies of heavy metal contaminations of urban dusts in developed countries, little attention has been paid to this kind of study in developing countries, including China. Therefore, a series of investigations were performed to provide heavy metal signatures of urban dusts and to evaluate potential sources in Xi'an, Shaanxi Province. Sixty-five samples of urban dusts were collected in Xi'an. Then Ag, Cr, Cu, Mn, Pb and Zn concentrations were determined by using atomic absorption spectrophotometry, and As, Hg and Sb concentrations by atomic fluorescence spectroscopy. The results indicate that, in comparison with Chinese soil, urban dusts in Xi'an have elevated metal concentrations as a whole, except those of arsenic and manganese. These concentration levels are comparable to those in other studies. Correlation coefficient analysis, principal component analysis (PCA) and cluster analysis (CA) were performed and three main sources with corresponding cluster elements were identified: (1) Ag and Hg have commercial and domestic sources; (2) Cr, Cu, Pb, Sb and Zn are mainly derived from industrial sources, combined with traffic sources as well for Pb and Zn; (3) As and Mn come mainly from soil sources, and As also has an industrial source. Based on PCA and CA analyses, manganese was selected as the reference element, and heavy metal enrichment factors (Efs) were calculated, which in turn further confirms the source identification. Also, Efs give an insight of human influence degree of urban dusts.  相似文献   

14.
Several major unusual mortality events occurring in recent years have increased the level of concern for the health of bottlenose dolphin populations along the United States Atlantic and Gulf of Mexico coasts. Trace element concentrations were examined in a population of free-ranging dolphins in Sarasota Bay, Florida, in order to develop a benchmark for future comparisons within and between populations. Whole blood (n=51) and skin (n=40) samples were collected through capture and release health assessment events during 2002-2004. Samples were analyzed for Al, V, Cr, Mn, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, and Pb by inductively coupled plasma mass spectrometry (ICPMS) and Hg via atomic fluorescence spectrometry (AFS). Trace element concentrations (wet mass) in skin were 2 to 45 times greater than blood, except Cu was approximately 1.5 times higher in blood. Statistically strong correlations (p<0.05) were found for V, As, Se, Rb, Sr, and Hg between blood and skin demonstrating that these tissues can be used as effective non-lethal monitoring tools. The strongest correlation was established for Hg (r=0.9689) and concentrations in both blood and skin were above the threshold at which detrimental effects are observed in other vertebrate species. Female dolphins had significantly greater Hg concentrations in blood and skin and Pb concentrations in skin, relative to males. Calves exhibited significantly lower V, As, and Hg concentrations in blood and V and Hg concentrations in skin, relative to other age classes. Rubidium and Cu concentrations in skin were greatest in subadults and calves, respectively. In blood, V, Zn, and As concentrations were significantly greater in winter, relative to summer, and the opposite trend was observed for Rb and Sr concentrations. In skin, Cu and Zn concentrations were significantly greater in winter, relative to summer, and the opposite trend was observed for Mn, Rb, Cd, and Pb concentrations. The baseline concentrations and trends established in this study will serve as a benchmark for comparison and aid in sampling design for future monitoring of this population and other coastal bottlenose dolphin populations.  相似文献   

15.

The Kouh-e Zar mining area is located in the central part of the “Khaf–Bardaskan” volcanic-plutonic zone, NE Iran. Mining activity has resulted in pollution of soil and water resources by potentially toxic elements including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), antimony (Sb), nickel (Ni) and zinc (Zn). In this study, the major source of heavy metal pollution and elucidating the probable environmental risks associated with this area were determined by quantifying pollution in soils and water resources. Concentrations of Cd, Cr, Cu, Pb and Zn in the Kouh-e Zar mining area varied in the range of 5–470, 33–442, 25–5125, 81.15–12,096.27 and 55–4210 mg/kg, respectively. The geo-accumulation index for Cd in all samples was extremely high (Igeo > 5) and the enrichment factor also shows an extremely high amount (EF > 40), both representing evidence for highly polluted soil in the area. However, the coefficients of aqueous migration (Kx) of Cd, Cr, Cu, Pb and Zn were Kx < 0.1, so they are classified as “least mobile and inert” grade. Also, the heavy metals tend to remain in soil (solid environment). Cluster analysis (CA) determined the lithogenic origin for Zn, Cu, Cr and Cd, and the anthropogenic origin (mining activity) for Pb in the soils of the mining area. The concentrations of Cd, Cu, Pb and Zn in water are controlled by free Fe and Mn oxy-hydroxide content in the soils. Both water–rock interaction and mining activity have contributed to pollution in the area.

  相似文献   

16.
The contents of Ag, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, Se, Sr, Th, Ti and Zn in 143 autopsied liver and kidney specimens from two Ontario communities (Kingston and Ottawa) were determined using the techniques of inductively-coupled plasma--atomic emission spectrometry, and electrothermal atomization--atomic absorption spectrometry coupled with hydride evolution (As, Se), reduction--aeration (Hg), or solvent extraction (Pb). The majority of samples came from individuals older than 50 y. In general, the data for the various elements were independent of age or sex but showed some dependence on location for elements such as Cu, Fe, K, Mg, Mn, Na, P, Se and Zn. Despite these differences the elemental values of the liver and kidney samples from both the communities were within the normal range.  相似文献   

17.
Anthropogenic emissions of metals from sources such as smelters are an international problem, but there is limited published information on emissions from Australian smelters. The objective of this study was to investigate the regional distribution of heavy metals in soils in the vicinity of the industrial complex of Port Kembla, NSW, Australia, which comprises a copper smelter, steelworks and associated industries. Soil samples (n=25) were collected at the depths of 0-5 and 5-20 cm, air dried and sieved to <2 mm. Aqua regia extractable amounts of As, Cr, Cu, Pb and Zn were analysed by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). Outliers were identified from background levels by statistical methods. Mean background levels at a depth of 0-5 cm were estimated at 3.2 mg/kg As, 12 mg/kg Cr, 49 mg/kg Cu, 20 mg/kg Pb and 42 mg/kg Zn. Outliers for elevated As and Cu values were mainly present within 4 km from the Port Kembla industrial complex, but high Pb at two sites and high Zn concentrations were found at six sites up to 23 km from Port Kembla. Chromium concentrations were not anomalous close to the industrial complex. There was no significant difference of metal concentrations at depths of 0-5 and 5-20 cm, except for Pb and Zn. Copper and As concentrations in the soils are probably related to the concentrations in the parent rock. From this investigation, the extent of the contamination emanating from the Port Kembla industrial complex is limited to 1-13 km, but most likely <4 km, depending on the element; the contamination at the greater distance may not originate from the industrial complex.  相似文献   

18.
Thirty-one samples of mothers' milk were analysed by neutron activation analysis for the concentrations of Mo, As, Mn, Zn, Cu 1.5 to 3 months post-partum. Group I consisted of 6 mothers having infants with neonatal obstructive jaundice and exhibited lower mean values of Cu and Mn at 0.18 μg/g and 11.7 μg/g as compared with 16 control subjects with 0.34 μg/g Cu and 23.0 μg/g Mn; Mo levels were approximately twice as high (12.2 μg/g) as the control values (6.4 μg/g); Zn and As were grossly comparable. Group II consisted of 9 mothers who had delivered infants with either a congenital hydrocephalus (n = 7) or meningomyelocoele (n = 2), exhibited a mean Cu level of 0.27 μg/g, Zn 1.7 μg/g, Mn 25.3 μg/g and As 0.45 μg/g. These findings are discussed in the light of the patho-physiology of the congenital anomaly of the infant.  相似文献   

19.
The collapse of a pyrite-mining, tailing dam on 25 April 1998 contaminated approximately 2000 ha of croplands along the Agrio and Guadiamar river valleys in southern Spain. This paper reports the accumulation of chemical elements in soil and in two crops--sunflower and sorghum--affected by the spill. Total concentrations of As, Bi, Cd, Cu, Mn, Pb, Sb, Tl and Zn in spill-affected soils were greater than in adjacent, unaffected soils. Leaves of spill-affected crop plants had higher nutrient (K, Ca and Mg for sunflower and N and K for sorghum) concentrations than controls, indicating a 'fertilising' effect caused by the sludge. Seeds of spill-affected sunflower plants did accumulate more As, Cd, Cu and Zn than controls, but values were below toxic levels. Leaves of sorghum plants accumulated more As, Bi, Cd, Mn, Pb, Tl and Zn than controls, but these values were also below toxic levels for livestock consumption. In general, none of the heavy metals studied in both crops reached either phytotoxic or toxic levels for humans or livestock. Nevertheless, a continuous monitoring of heavy metal accumulation in soil and plants must be established in the spill-affected area.  相似文献   

20.
To obtain information on the fate of trace metals discharged to an estuarine environment, analyses have been made on water and sediment samples from Back River, MD., and on effluent from the large wastewater treatment plant that discharges there. Within 2–3 km of the outfall, the concentration (in μg 1−1) of all metals decreases as follows: Mn, > 120-90; Fe, > 570-300; Cu, 53-7; Zn, 280-9; Cd, 3.5-0.5 and Pb, 31-<4. Except possibly for Mn and Fe, these decreases are much greater than can be ascribed to simple dilution, so physical, chemical or biological processes must be removing metals to the sediments. Correspondingly, sediment concentrations of Cu, Zn, Cd and Pb are approximately one order of magnitude higher than normally found in uncontaminated areas. After the initial decrease, concentrations of Mn and Cd in the water begin to rise again, suggesting remobilization from the sediments. Comparison of the estimated annual discharge of 8 trace metals to the Chesapeake Bay from wastewater treatment plants and from rivers suggests that the wastewater input may be within one order of magnitude of the fluvial input for Cr, Cu, Zn, Cd and Pb. Of the metals studied, Cd presents the greatest potential for serious pollution because its input from wastewater probably exceeds fluvial input, it appears to be readily remobilized from sediments, and it is known to be toxic to many organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号