首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chitin from squid pen (Loligo sp.) and kiddi shrimp shell (Parapenaeopsis stylifera) were treated at room temperature (30 ± 2°C) with four different concentrations of sodium hydroxide: 20, 30, 40, and 50% w/w. With 50% sodium hydroxide solution, within 108 h, the chitin from squid pen was deacetylated to give chitosan. But it required 126 h at 40% and 144 h at 30% concentration of sodium hydroxide. In the case of chitin from Parapenaeopsis stylifera, complete deacetylation took place after 120 h and 168 h at 50 and 40% concentrations of sodium hydroxide, respectively. But shrimp shell on treatment with 20 and 30% sodium hydroxide solutions and squid pen kept at 20% sodium hydroxide were not sufficiently deacetylated even after 480 h. Properties like degree of deacetylation, viscosity and molecular weight of the prepared chitosan samples were studied. Minimum alkali concentration required for the formation of chitosan at room temperature was found to be 30% for squid chitin and 40% for shrimp chitin. With the increase in the time of deacetylation, decreases in molecular weight and viscosity were observed in chitosan from both sources. Maximum viscosity was recorded by chitosan prepared from squid pen using 30% sodium hydroxide solution at room temperature.  相似文献   

2.
The molecular structures of chitin and chitin hydrolyzed with sodium hydroxide for different time intervals at 160°C were followed using infrared spectroscopy in the range 200–4000 cm?1. The frequency and intensity of active groups NHCOCH3, NH2, OH, and OCH3 in chitin, chitosan, cellulose, and lignin, respectively, were calculated and correlated with molecular structural changes. The dielectric constant ?′, dielectric loss ?″, and dissipation factor tan δ for the investigated samples were measured in the frequency range 0.1–100 kHz and interpreted in terms of the molecular structure elucidated from the infrared spectroscopic studies. Also, the effect of blending of cellulose and lignin with chitin on their dielectric properties was investigated. It was found that hydrolysis of chitin improved its insulating properties.  相似文献   

3.
High‐strength poly(ethylene terephthalate) (PET) fibers were obtained using low molecular weight (LMW) polymervia horizontal isothermal bath (hIB), followed by postdrawing process. We investigated the unique formations of different precursors, which differentiated in its molecular orientation and crystalline structures from traditional high‐speed spinning PET fibers. Sharp increase in crystallinity was observed after drawing process even though the fibers showed almost no any crystallinity before the drawing. Properties of as‐spun and drawn hIB and control filaments at different process conditions were compared. As would be expected, performances of resulted treated undrawn and drawn fibers have dramatically improved with developing unique morphologies. Tenacities more than 8 g/d for as‐spun and 10 g/d for drawn treated fibers after just drawn at 1.279 draw ratio were observed. These performances are considerably higher than that of control fibers. An explanation of structural development of high‐strength fibers using LMW polymer spun with hIB is proposed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42747.  相似文献   

4.
The effect that polymer molecular weight has on the dispersion of relatively polar montmorillonite (MMT) in nonpolar, unmodified high density polyethylene (HDPE) was examined. Polymer layered silicate (PLS) nanocomposites were prepared via melt compounding in a single screw extruder using three unmodified HDPE matrices of differing molecular weight and organically modified MMT (organoclay) in concentrations ranging from 2 to 8 wt%. The weight average molecular weights (M W) of the HDPE matrices used ranged from 87,000 to 460,000 g/mol. X‐ray diffraction (XRD), tensile testing, dynamic mechanical thermal analysis (DMTA), and dynamic rheometry were performed on these nanocomposites. Nanocomposites generated from the high molecular weight (HMW) HDPE matrix exhibited increased intercalation of the MMT as shown by XRD and greater improvements in the Young's modulus when compared with nanocomposites generated from the low (LMW) and middle molecular weight (MMW) matrices. DMTA measurements carried out in torsion showed that the increase in shear modulus of the HMW nanocomposites was not as great as that of the LMW and MMW counterparts as observed from a lower percentage enhancement in the storage modulus (G′) and estimated heat distortion temperature (HDT). This was attributed to the higher degree of mechanical anisotropy in the HMW nanocomposites. POLYM. COMPOS., 28:499–511, 2007. © 2007 Society of Plastics Engineers  相似文献   

5.
Degradation of native κ‐carrageenan was performed using acid hydrolysis aided with microwave heating. Combined with nonofiltration membrane (cut‐off molecular weight 250 Da) separation, 1. 400 Da ‐ 50 kDa low‐molecular‐weight (LMW) κ‐carrageenans were obtained. Narrow molecular weight distribution of LMW κ‐carrageenans could be prepared under pH 2.18 during the microwave power range investigated. The in vivo anti‐influenza virus (IV) activity of three kinds of LMW κ‐carrageenans (3, 5, and 10 kDa), their acetylated derivatives (acetylation degree of 1.5), as well as an acetylated and sulfated derivative of 3 kDa carrageenan (acetylation degree of 1.0 and sulfation degree of 2.4), were investigated using FM1‐induced pulmonary oedema model. These LMW κ‐carrageenans showed significant inhibition against FM1‐induced pulmonary oedema as compared with the virus control, although their activities were inferior to that of positive control, Rabivirin. Introduction of acetyl groups greatly increased their anti‐IV activity. The acetylated 3‐kDa κ‐carrageenan exhibited comparative activity with Rabivirin at both doses of 6 and 30 2. mg/kg·d, and the acetylated and sulfated derivative of 3 kDa carrageenan displayed higher activity than Rabivirin at the dose of 30 mg/kg·d. These results disclosed that 3 kDa κ‐carrageenan with proper acetylation degree and sulfation degree was a potential candidate against influenza virus. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
《Polymer Composites》2017,38(1):126-131
In this work, the biphenol polyarylether nitrile (BP‐PEN) films with improved processability were prepared by blending low molecular weight (LMW) with high molecular weight (HMW) of BP‐PEN. The hybrid membrane exhibited excellent thermal stability and mechanical strength. The Tid values of the films were as high as 505°C–522°C. Melting behavior studies indicated that the crystallinity of LMW BP‐PEN was higher than that of HMW, which was confirmed by the X‐ray diffraction (XRD) patterns analysis as well. Scanning electron microscope (SEM) provided additional information on morphology and phase adhesion. Additionally, the polymer crystallinity dependent on dielectric properties of blends films is reported. Most importantly, it is found that the combination of LMW and HMW BP‐PEN would be an effective method to simultaneously increase the mechanical, thermal, dielectric properties, and polymer processability. POLYM. COMPOS., 38:126–131, 2017. © 2015 Society of Plastics Engineers  相似文献   

7.
Films were cast using sodium alginate (NaAlg), high molecular weight (HMW) chitosan, and low molecular weight (LMW) chitosan as film forming biopolymers. Fludioxonil (Fl) at 1% concentration was used as fungicide. Thermal stability, mechanical, and water sorption properties of the films were examined. The effects of films on the Fusarium solani colony radial growth were evaluated in vitro and in potato tubers. Results showed that chitosan films were more thermally stable and less hydrophilic than alginate films. Addition of fluodioxonil to the films significantly reduced the film strength and increased the elongation at break as well as the film stiffness. In vitro studies showed that when fludioxonil was added to the formulation, NaAlg and Chitosan‐LMW films had significantly higher antifungal activity (Fungistatic index = 56%) than Chitosan‐HMW films (Fungistatic index = 50%). In vivo studies showed that Chitosan‐LMW‐1%Fl films delay the mycelial growth of F. solani in tubers kept at 25 °C for 2 weeks. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44017.  相似文献   

8.
Conjugated linoleic acid concentration in processed cheese   总被引:10,自引:0,他引:10  
The conjugated linoleic acid (CLA) concentration of a variety of processed cheese products ranged between 3.2 to 8.9 mg/g fat. Processing cheddar cheese at temperatures of 80°C and 90°C under atmospheric conditions increased (p < 0.05) CLA content, while processing under nitrogen (70°C, 85°C) had no effect. Increasing concentrations of whey protein concentrate (WPC) and its low molecular weight (LMW) fraction from 0 to 6% increased CLA formation. Six percent WPC and LMW fraction produced a 35% and 19% increase in CLA concentration, respectively, compared to processed cheese. The high molecular weight fraction of WPC did not increase CLA concentration. These results suggest that processing conditions and whey components play a role in CLA formation in processed cheese.  相似文献   

9.
In this study, the monodisperse–macroporous particles produced by a relatively new polymerization protocol, the so‐called, “modified seeded polymerization,” were used as column‐packing material in the reversed phase chromatography (RPC) of proteins. The particles were synthesized in the form of styrene‐divinylbenzene copolymer approximately 7.5 μm in size. In the first stage of the synthesis, the monodisperse polystyrene particles 4.4 μm in size were obtained by dispersion polymerization and used as the “seed latex.” The seed particles were swollen by a low‐molecular‐weight organic agent and then by a monomer mixture. The monodisperse–macroporous particles were obtained by the polymerization of monomer mixture in the seed particles. In the proposed polymerization protocol, the number of successive swelling stages was reduced with respect to the present techniques by the use of sufficiently large particles with an appropriate average molecular weight as the seed latex. A series of particles with different porosity properties was obtained by varying the monomer/seed latex ratio. The separation behavior of HPLC columns including the produced particles as packing material was investigated in the RPC mode using a protein mixture including albumin, lysozyme, cytochrome c, and ribonuclease A. The chromatograms were obtained with different flow rates under an acetonitrile–water gradient. The theoretical plate number increased and chromatograms with higher resolutions were obtained with the particles produced by using a lower monomer/seed latex ratio. The separation ability of the column could be protected over a wide range of flow rates (i.e., 0.5–3 mL/min) with most of the materials tested. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 607–618, 2004  相似文献   

10.
N‐Acetylglucosamine (GlcNAc), the monomeric constituent of chitin, is rarely used as a carbon source for fermentation technology. In this study, we demonstrate that the oleaginous yeast Cryptococcus curvatus ATCC 20509 can produce intracellular lipid during the cultivation process and total lipid content can reach 54% on a GlcNAc‐based medium. Culture of C. curvatus under various conditions indicated that lipid accumulation also occurred at a relatively broad range of temperatures as well as relatively high initial GlcNAc concentrations. Fatty acid analysis indicated that the product was rich in palmitic acid, stearic acid, and oleic acid, closely resembling the composition of palm oil. More importantly, the lipid sample produced at 22 °C had a total saturated fatty acid content of 54.2 wt%, suggesting that it may be explored as cocoa‐butter equivalent. Our data suggested that GlcNAc could be used as a feedstock for industrial biotechnology and that C. curvatus ATCC 20509 is a strain capable of accumulating high intracellular lipid using this nitrogen‐rich renewable material. Practical applications: Microbial lipid is a versatile material, especially for biodiesel production. Stable and abundant renewable raw substrates remain to be explored for large‐scale production of microbial lipid. The present work reports lipid production using N‐acetylglucosamine (GlcNAc) by the oleaginous yeast Cryptococcus curvatus ATCC 20509 to yield up to 54% intracellular lipid content. More significantly, the lipid sample produced at 22 °C had a total saturated fatty acid content of 54.2 wt%, suggesting that it may be explored as cocoa‐butter equivalent. Our technology provides the opportunity to effectively convert GlcNAc, available from one of the most abundant renewable materials chitin, into lipid. This procedure should prove valuable in terms of renewable energy production as well as environmental pollution control.  相似文献   

11.
Summary The effect of tert-butyl chloride in the polymerizations of isobutylene carried out in the presence of SnCl4 in dichloromethane at temperatures-20°C and-78°C was investigated. Synthesized polyisobutylene samples showed a bimodal molecular weight distribution (MWD) and it was found that the weight content of the lowermolecular weight (LMW) fraction increased with increasing t-BuCl concentration in the polymerization mixture. The effect of ageing of the initiation mixture t-BuCl/SnCl4 in CH2Cl2 prepared in advance on MWD of the PIB samples was also studied. Ageing of the initiation system supports the formation of the LMW fraction and this oily PIB is the only product of the polymerization at-20°C, .  相似文献   

12.
A multistage polymerization protocol, the so‐called “modified seeded polymerization,” was developed for the production of monodisperse‐porous poly(styrene‐co‐divinylbenzene) providing high column efficiency as a packing material in reversed phase high performance liquid chromatography (RPLC). In the first stage of the multistage production, uniform polystyrene seed particles, produced by dispersion polymerization, were swollen by an organic agent (i.e., the diluent) and then by a monomer mixture containing styrene and divinylbenzene. The final porous particles were obtained in the monodisperse form by the polymerization of monomer mixture in the seed particles. By the use of a small size seed latex with low molecular weight and by the selection of the appropriate diluent, relatively small monodisperse‐porous particles with suitable pore structure could be achieved. In the reversed phase separation of alkylbenzenes, under isocratic conditions, theoretical plate numbers up to 40,000 plates/m were achieved by using 5.2 μm porous particles, obtained by a toluene‐dibutyl phthalate mixture as the diluent. No significant decrease in the resolution power was observed by the fourfold increase in the mobile phase flow rate. The column efficiency and the resolution observed with 5.2 μm monodisperse‐porous particles were significantly higher with respect to the currently available polymer based packing materials used in the reversed phase HPLC. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1430–1438, 2005  相似文献   

13.
The formation of colloidal unimolecular polymer (CUP) particles from single polymer strands was investigated as a function of molecular weight. The CUP particle size was correlated with the absolute molecular weight and its distribution. The characteristics of the particles were evaluated with respect to viscosity, acid number, size distribution, and stability. The particle size varied from less than 3 nm to above 8 nm representing polymers with molecular weight in the range of 3000–153,000. Lower molecular weight polymers were found to be unstable. Particle size measurements using dynamic light scattering technique indicated a normal distribution which corresponded to the molecular weight distribution of the copolymer. The statistical distribution of the acid groups in the polymer chains played a significant role in the stability of low molecular weight polymers.  相似文献   

14.
The effect of molecular weight blending on melt flow characteristics has been studied with a 50/50 mixture of suspension PVC resins with the respective M w of 56,300 and 123,000. The dynamic shear measurements were made with the Rheometrics Visco-Elastic Tester at angular frequencies of 0.1 to 40 radians/s. In the temperature range of 160 to 215° C, all samples showed three distinct flow regions marked by three different values of the activation energy. The high molecular weight fraction introduced a relatively strong influence on the melt flow characteristics of the blend due to the effect of its relatively high crystalline content. These samples also failed to show a Newtonian flow behavior at 190°C at an extremely low shear rate corresponding to 10?4 radians/s., possibly reflecting the effect of the remnant crystallinity of the material.  相似文献   

15.
Reactor blends of polyethylene/poly(ethylene-co-1-octene) resins with bimodal molecular weight and bimodal short chain branching distributions were synthesized in a two-step polymerization process. The compositions of these blends range from low molecular weight (LMW) homopolymer to high molecular weight (HMW) copolymer and vice versa HMW homopolymer to LMW copolymer. The shear flow characteristics of these polymers in the typical processing range mostly depend on the molecular weight and MWD of the polymer and are independent of the short chain branch content. From oscillatory shear measurements, it was observed that the viscosity of HMW polymers was reduced with the addition of LMW material. For the polymers produced with this two-step polymerization process, the LMW homopolymer and HMW copolymer blends and HMW homopolymer and LMW copolymer blends were melt miscible, despite the large viscosity differences of the pure components.  相似文献   

16.
In this study, a new hybrid alkyd resin was formulated using melamine-based hyperbranched polymer having 24 hydroxyl groups on its structure and relatively low molecular weight alkyd. The alkyd was synthesized using an oil mixture (40% linseed + 60% sunflower). Melamine was used as the core molecule for the hyperbranched polymer due to its excellent properties such as greater hardness, alkali and solvent resistance, and thermal stability. Melamine was first hydroxylated using formaldehyde and changed into hexamethylol melamine. This product was then twice hydroxylated with dimethylol propionic acid to obtain a hyperbranched polymer with 24 hydroxyl end groups. It was then reacted with low molecular weight alkyd resin at different proportions. The product had a low viscosity and could easily flow like oil. It is a solvent-free and water-free liquid. The ‘hyperbranched polymer/alkyd’ ratio affected physical properties of the liquid polymer and also the mechanical properties of the hardened polymer, which can be used for surface coating. The viscosity of the liquid resin decreases from 148 to 8.84 Pa.s as the hyperbranched-polymer-to-alkyd ratio is decreased from 1:3 to 1:24. On the other hand, the hardness of heat-treated resin decreases from 198 Persoz to 43 Persoz, respectively. That is, the increase in the amount of hyperbranched polymer in the resin increases hardness, whereas the increase in the amount of alkyd decreases it. The mechanical tests of hardened resins showed that all specimens passed conical mandrel bending test, and they all depicted high adhesion, and high abrasion and impact resistance. The specimens also had excellent gloss properties.  相似文献   

17.
The melt rheological behaviors in both linear and nonlinear regions were studied for binary blends of high-density polyethylenes (HDPEs) with unimodal molecular weight distribution (MWD). The surface distortion of the component resin with high-molecular-weight (HMW) and wide MWD through the capillary die could be alleviated with the addition of the component resin with low-molecular-weight (LMW) and narrow MWD. At the concentration of LMW component resin above 50 wt%, the negative deviation behavior (NDB) was observed in both the plots of dynamic storage modulus and complex viscosity versus the composition of the blends, furthermore, the Cole-Cole plot of the blend was below that of the pure LMW component, indicating the characteristics of immiscibility. However, the characteristic of homogeneity was revealed in the logG′~logG″ curves that possessed almost identical slopes for all the blends. The anomalous phenomena were attributed to the slow diffusion of HMW ingredients in the blends, which was aggravated by the inefficient stress transfer during melt blending at high concentration of LMW component.  相似文献   

18.
Spherical and well‐dispersed silica/poly[styrene‐co‐(acrylic acid)] (SiO2/PSA) core–shell particles have been synthesized using an improved phase‐inversion process. The resulting particles were successfully used as supports for polyolefin catalysts in the production of polyethylene with broad molecular weight distribution. Through the vapor phase, instead of the liquid phase in the traditional process, a non‐solvent was introduced into a mixture of micrometer‐sized SiO2 and PSA solution. The core–shell structure of the resulting SiO2/PSA microspheres was confirmed using optical microscopy, scanning electron microscopy, Fourier transfer infrared spectrometry, thermogravimetric analysis and measurement of nitrogen adsorption/desorption isotherms. In order to avoid agglomeration of particles and to obtain a good dispersion of the SiO2/PSA core–shell microspheres, the non‐solvent was added slowly. As the concentration of PSA solution increased, the surface morphology of the core–shell particles became looser and more irregular. However, the surface area and the pore volume remained the same under varying PSA concentrations. The SiO2/PSA core‐shell microspheres obtained were used as a catalyst carrier system in which the core supported (n‐BuCp)2ZrCl2 and the shell supported TiCl4. Ethylene/1‐hexene copolymerization results indicated that the zirconocene and titanium‐based Ziegler–Natta catalysts were compatible in the hybrid catalyst, showing high activities. The resulting polyethylene had high molecular weight and broad molecular weight distribution. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Lactic acid fermentation was used to extract chitin from prawn shell (Nephrops norvegicus) at two different scales of operation. The fermentation products were characterized and compared with chitin extracted from the same source by a chemical method. Chitosans produced from the obtained chitins were evaluated in terms of their intrinsic viscosity, molecular weight and degree of acetylation (DA). The fermentation removed 690 g kg?1 and 770 g kg?1 of inorganic matter, 490 and 440 g kg?1 of protein and 540 and 770 g kg?1 of lipids from the shells at laboratory and pilot plant scales, respectively. However, the functional properties such as the DA of the chitin, the molecular weight and the DA of the chitosans were similar to those obtained for the chemically‐obtained chitin and its chitosan. Despite the incomplete extraction of chitin this biological process could be useful to produce chitin and chitosan in a more environment‐friendly approach. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
About 0.7–2 μm diameter poly (methyl methacrylate) (PMMA) foamed particles were prepared via thermally induced phase separation (TIPS) from a PMMA/ethanol mixture and vacuum dried. It was found that ethanol, known to be a poor solvent to PMMA, could dissolve PMMA when the temperature was over 60°C. The solubility of PMMA (Mw = 15,000 and Mw = 120,000) in ethanol was measured and was found to increase as the temperature increased. PMMA particles on the scale of submicron and single micron diameter could be precipitated from the PMMA/ethanol solution by temperature quenching. Then, since the precipitated particles contained a certain amount of ethanol, the precipitated particles could be foamed using the ethanol as a foaming agent in a vacuum drying process. Vacuum drying at temperatures slightly below the glass transition temperature of the polymer could make the particles foam. The effects of foaming temperature and the molecular weight of the polymer on the size of foamed particles were investigated. The experimental results showed that the vapor pressure and the molecular weight of the polymer are key factors determining the expandability of the micro particles. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号