共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
以水为核,OP-10为表面活性剂,环氧树脂为壳,采用原位聚合法,制备出"核-壳"型环氧树脂微球,真空干燥除去水得到中空的环氧树脂微球,并用扫描电子显微镜、红外光谱和热失重对微球进行了表征。扫描电子显微镜结果表明,当OP-10质量分数约为4%、乙二醇初始温度为50℃时,制备的环氧微球具有较好的中空结构;红外光谱结果表明,所制备的环氧树脂中空微球固化较完全;热失重结果表明环氧树脂中空微球在失重10%时的温度为342℃,质量保存率为16%;激光粒度仪测试结果表明,环氧微球粒径分布范围为10μm~800μm,体积加权平均粒径为285μm。 相似文献
3.
4.
5.
6.
7.
近年来,中空纳米微球的制备极大地吸引了国内外学者的目光。空心微球具有比表面大、质轻、高的流动性、高的堆积密度、不易团聚、可包容客体分子,填充到复合材料中不易引起应力集中等多种优异特性,在生产和生活中受到越来越多的重视。就目前国内外微球制备的研究状况,综述了近年来空心微球的制备原理、方法及应用,并对其制备技术的发展作了介绍。 相似文献
8.
采用十二烷基硫酸钠(SDS)和十六烷基三甲基溴化铵(CTAB)复配体系自组装囊泡为软模板,水溶性酚醛树脂为前驱体,通过调控阴阳离子表面活性剂的摩尔配比得到了一系列酚醛树脂中空微球材料。对合成的材料通过X射线衍射仪(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、氮气吸附-脱附分析仪、热重分析仪(TG-DTA)等仪器进行了表征,得到酚醛树脂中空微球的最佳合成条件为n(CTAB)/n(SDS)=1.4、反应温度为70℃、反应时间为48 h、搅拌速率为400 r/min。合成的微球粒径在30~100 nm之间,球壳为多层膜结构,球壳总厚度在8~12 nm左右,结构具有良好的介观周期性。 相似文献
9.
10.
11.
本工作采用低温溶剂水浴热法, 以葡萄糖、柠檬酸盐为辅助剂, 首先制备了柠檬酸锌空心微球, 然后在空气气氛中500℃煅烧制得ZnO空心微球。应用XRD、TG-DSC、SEM、TEM、IR对产物的组成、结构以及形貌进行了研究, 研究发现该方法制备的前驱体为直径约为2 μm, 壁厚约为200 nm的空心微球。由前驱体煅烧后得到的ZnO空心微球由粒径为20~30 nm的纳米粒子组装成, 平均直径约为1 μm, 壁厚约为100 nm。此外还采用光致发光光谱仪(PL)对产物的光学性能进行了研究, 结果表明ZnO空心微球在激发波长为325 nm的条件下具有较好的蓝光发光性能, 发光峰位于469 nm处。 相似文献
12.
13.
在常压条件下,合成了高邻位热塑性酚醛树脂,并考察了反应过程中催化剂种类、反应原料配比等因素对树脂性能的影响。通过软化点测试仪、核磁共振谱仪和热分析(TG-DSC)等研究了树脂合成过程中各制备参数对树脂结构和固化性能影响。结果表明:选择醋酸锌做邻位加成的第一催化剂,有机酸草酸做缩聚反应的第二催化剂,m(P)/m(F)比为1:0.7时合成酚醛树脂的O/P值较高,凝胶时间较短,固化反应更易进行。 相似文献
14.
SiO2空心微球的制备与表征 总被引:2,自引:0,他引:2
以自制的微米级碳酸钙颗粒为模板,正硅酸乙酯为硅源,通过溶胶-凝胶方法合成出CaCO3/SiO2核壳结构;随后通过高温煅烧、酸浸和干燥处理,制备出圆形度高、分散性好、结构完整的微米级SiO2空心球。并利用SEM、XRD、FTIR、TG和压缩实验等方法对空心微球的形貌、结构和抗压强度进行了分析和测定。SiO2空心微球的粒径为2-5μm,壳层厚度为0.42-0.85μm,比表面积为554.01m^2/g,最可几孔径为1.7nm,抗压强度在20~30MPa之间。 相似文献
15.
Abstract: Low-density sheet-moulding compounds based on hollow glass micro-spheres are usually classified as syntactic foams if the filler content is relatively high. Syntactic foams are potentially suitable materials for applications where impact loads occur as they are able to reduce impact force. The addition of hollow micro-spheres tends to increase the specific values in terms of impact force and, marginally, in flexural modulus for high-volume fractions of micro-spheres. In this study, the effects of load rate and of immersion of the specimens in water up to 67 days were studied on the flexural mechanical properties and particularly on the fracture toughness, K IC . Hollow micro-spheres (Verre ScotchitTM-K20) with epoxy and polyester polymer binder were used. Fracture toughness, K IC , flexural stiffness modulus and ultimate strength were obtained as functions of load rate and immersion time. The increase of load rate tends to increase stiffness modulus, but effects on K IC were found to be only marginal. Ultimate strength increases significantly with the increase of load rate for epoxy-based composites, but for the case of the polyester-based foams, only a negligible effect was observed. The increase of the immersion time in water tends to reduce stiffness modulus. K IC decreases slightly after 15 days for the polyester-based composites and after 67 days for epoxy-based foams, and only negligible effects on ultimate strength were observed. 相似文献
16.
以Na2S、La和S或Se为原料在750℃下固相反应合成新型钠快离子导体NaLaS2和NaLaS1.5Se0.5.X射线衍射分析表明,NaLaS2和NaLaS1.5Se0.5具有相同的晶体结构,其空间群为FM3-M.通过在0.1Hz~100kHz的频率范围交流阻抗谱的测试,分析了这些快离子导体的离子导电性,发现在相同的温度下NaLaS1.5Se0.5的电导率高于NaLaS2.NaLaS2在30和90℃时的电导率分别为3.65×10-5和6.23×10-5S·cm-1,而NaLaS1.5Se0.5在30和60℃时的电导率分别为8.11×10-5和1.37×10-4S·cm-1.通过对合成物晶体结构的分析,推测这两种化合物的导电率差异可能来自于Se2-离子较高的极化能力,以及离子半径较大的Se2-引起的局部晶格扩大. 相似文献
17.
高残炭热固性酚醛树脂的合成及表征 总被引:2,自引:0,他引:2
以萘酚部分替代苯酚合成了高残炭热固性酚醛树脂。研究了萘酚用量、催化剂用量、反应温度和时间对残炭率的影响,确定了合成工艺条件。用IR和TGA对产品的化学结构与热性能进行了分析测定,结果表明,树脂分子链中不稳定的醚键含量低于普通酚醛树脂,产品的分解温度为460℃,残炭率可达61.3%,适用于碳/碳复合材料和耐烧蚀材料的树脂基体。 相似文献
18.
19.
This paper presents the results of a first successful attempt to produce hollow micro- and nano-particles of a large variety of materials, dimensions, shapes and hollow attributes by using an environmentally friendly and cheap technology, common in polymer processing and known as gas foaming. The central role played by ad hoc polymeric hollow micro- and nano-particles in a variety of emerging applications such as drug delivery, medical imaging, advanced materials, as well as in fundamental studies in nanotechnology highlights the wide relevance of the proposed method. Our key contribution to overcome the physical lower bound in the micro- and nano-scale gas foaming was to embed, prior to foaming, bulk micro- and nano-particles in a removable and deformable barrier film, whose role is to prevent the loss of the blowing agent, which is otherwise too fast to allow bubble formation. Furthermore, the barrier film allows for non-isotropic deformation of the particle and/or of the hollow, affording non-spherical hollow particles. In comparison with available methods to produce hollow micro- and nano-particles, our method is versatile since it offers independent control over the dimensions, material and shape of the particles, and the number, shape and open/closed features of the hollows. We have gas- foamed polystyrene and poly-(lactic-co-glycolic) acid particles 200 ~m to 200 nm in size, spherical, ellipsoidal and discoidal in shape, obtaining open or closed, single or multiple, variable in size hollows. 相似文献
20.
Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy‐related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi‐shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium‐ion batteries and hybrid supercapacitors, sulfur hosts for lithium–sulfur batteries, and electrocatalysts for oxygen‐ and hydrogen‐involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy‐related applications. 相似文献