首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The free cysteine residues in the extremely thermophilic Thermoanaerobacter brockii alcohol dehydrogenase (TBADH) were characterized using selective chemical modification with the stable nitroxyl biradical bis(1-oxy-2,2,5,5-tetramethyl-3-imidazoline-4-yl)disulfide, via a thiol-disulfide exchange reaction and with 2[14C]iodoacetic acid, via S-alkylation. The respective reactions were monitored by electron paramagenetic resonance (EPR) and by the incorporation of the radioactive label. In native TBADH, the rapid modification of one cysteine residue per subunit by the biradical and the concomitant loss of catalytic activity was reversed by DTT. NADP protected the enzyme from both modification and inactivation by the biradical. RPLC fingerprint analysis of reduced and S-carboxymethylated lysyl peptides from the radioactive alkylated enzyme identified Cys 203 as the readily modified residue. A second cysteine residue was rapidly modified with both modification reagents when the catalytic zinc was removed from the enzyme by o-phenanthroline. This cysteine residue, which could serve as a putative ligand to the active-site zinc atom, was identified as Cys 37 in RPLC. The EPR data suggested a distance of < or 10 A between Cys 37 and Cys 203. Although Cys 283 and Cys 295 were buried within the protein core and were not accessible for chemical modification, the two residues were oxidized to cystine when TBADH was heated at 75 degrees C, forming a disulfide bridge that was not present in the native enzyme, without affecting either enzymatic activity or thermal stability. The status of these cysteine residues was verified by site directed mutagenesis.  相似文献   

2.
The amino acid residues involved in the metal-binding site in the iron-containing dehydrogenase family were characterized by the site-directed mutagenesis of selected candidate residues of propanediol oxidoreductase from Escherichia coli. Based on the findings that mutations H263R, H267A and H277A resulted in iron-deficient propanediol oxidoreductases without catalytic activity, we identified three conserved His residues as iron ligands, which also bind zinc. The Cys362, a residue highly conserved among these dehydrogenases, was considered another possible ligand by comparison with the sequences of the medium-chain dehydrogenases. Mutation of Cys362 to Ile, resulted in an active enzyme that was still able to bind iron, with minor changes in the Km values and decreased thermal stability. Furthermore, in an attempt to produce an enzyme specific only for the zinc ion, three mutations were designed to mimic the catalytic zinc-binding site of the medium-chain dehydrogenases: (1) V262C produced an enzyme with altered kinetic parameters which nevertheless retained a significant ability to bind both metals, (2) the double mutant V262C-M265D was inactive and too unstable to allow purification, and (3) the insertion of a cysteine at position 263 resulted in a catalytically inactive enzyme without iron-binding capacity, while retaining the ability to bind zinc. This mutation could represent a conceivable model of one of the steps in the evolution from iron to zinc-dependent dehydrogenases.  相似文献   

3.
3beta-(Iodoacetoxy)dehydroisoandrosterone (3beta-IDA), an analogue of the electrophilic substrate, Delta5-androstene-3,17-dione, as well as an analogue of several other steroid inhibitors of glutathione S-transferase, was tested as an affinity label of rat liver glutathione S-transferase, isozyme 1-1. A time-dependent loss of enzyme activity is observed upon incubation of 3beta-IDA with the enzyme. The rate of enzyme inactivation exhibits a nonlinear dependence on 3beta-IDA concentration, yielding an apparent Ki of 21 microM. Upon complete inactivation of the enzyme, a reagent incorporation of approximately 1 mol/mol of enzyme subunit or 2 mol/mol of enzyme dimer is observed. Protection against inactivation and incorporation is afforded by alkyl glutathione derivatives and nonsubstrate steroid ligands such as 17beta-estradiol-3,17-disulfate but, surprisingly, not by Delta5-androstene-3,17-dione or any other electrophilic substrate analogues tested. These results suggest that the site of reaction is within the nonsubstrate steroid binding site of the enzyme, which is distinguishable from the electrophilic substrate binding site, near the active site of the enzyme. Two cysteine residues, Cys17 and Cys111, are modified in nearly equal amounts, despite an average reagent incorporation of 1 mol/mol enzyme subunit. Isolation of enzyme subunits indicates the presence of unmodified, singly labeled, and doubly labeled subunits, consistent with mutually exclusive modification of cysteine residues across enzyme subunits; i.e., modification of Cys111 on subunit A prevents modification of Cys111 on subunit B and similarly for Cys17. Molecular modeling analysis suggests that Cys17 and Cys111 are located in the nonsubstrate steroid binding site, within the cleft between the subunits of the dimeric enzyme.  相似文献   

4.
Site-directed mutagenesis of the yeast V-ATPase A subunit   总被引:1,自引:0,他引:1  
To investigate the function of residues at the catalytic nucleotide binding site of the V-ATPase, we have carried out site-directed mutagenesis of the VMA1 gene encoding the A subunit of the V-ATPase in yeast. Of the three cysteine residues that are conserved in all A subunits sequenced thus far, two (Cys284 and Cys539) appear essential for correct folding or stability of the A subunit. Mutation of the third cysteine (Cys261), located in the glycine-rich loop, to valine, generated an enzyme that was fully active but resistant to inhibition by N-ethylmalemide, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole, and oxidation. To test the role of disulfide bond formation in regulation of vacuolar acidification in vivo, we have also determined the effect of the C261V mutant on targeting and processing of the soluble vacuolar protein carboxypeptidase Y. No difference in carboxypeptidase Y targeting or processing is observed between the wild type and C261V mutant, suggesting that disulfide bond formation in the V-ATPase A subunit is not essential for controlling vacuolar acidification in the Golgi. In addition, fluid phase endocytosis of Lucifer Yellow, quinacrine staining of acidic intracellular compartments and cell growth are indistinguishable in the C261V and wild type cells. Mutation of G250D in the glycine-rich loop also resulted in destabilization of the A subunit, whereas mutation of the lysine residue in this region (K263Q) gave a V-ATPase complex which showed normal levels of A subunit on the vacuolar membrane but was unstable to detergent solubilization and isolation and was totally lacking in V-ATPase activity. By contrast, mutation of the acidic residue, which has been postulated to play a direct catalytic role in the homologous F-ATPases (E286Q), had no effect on stability or assembly of the V-ATPase complex, but also led to complete loss of V-ATPase activity. The E286Q mutant showed labeling by 2-azido-[32P]ATP that was approximately 60% of that observed for wild type, suggesting that mutation of this glutamic acid residue affected primarily ATP hydrolysis rather than nucleotide binding.  相似文献   

5.
Liver microsomal glucose-6-phosphatase (Glc-6-Pase) is a multicomponent system involving both substrate and product carriers and a catalytic subunit. We have investigated the inhibitory effect of N-ethylmaleimide (NEM), a rather specific sulfhydryl reagent, on rat liver Glc-6-Pase activity. Three thiol groups are important for Glc-6-Pase system activity. Two of them are located in the glucose-6-phosphate (Glc-6-P) translocase, and one is located in the catalytic subunit. The other transporters (phosphate and glucose) are not affected by NEM treatment. The NEM alkylation of the catalytic subunit sulfhydryl residue is prevented by preincubating the disrupted microsomes with saturating concentrations of substrate or product. This suggests either that the modified cysteine is located in the protein active site or that substrate binding hides the thiol group via a conformational change in the enzyme structure. Two other thiols important for the Glc-6-Pase system activity are located in the Glc-6-P translocase and are more reactive than the one located in the catalytic subunit. The study of the NEM inhibition of the translocase has provided evidence of the existence of two distinct areas in the protein that can behave independently, with conformational changes occurring during Glc-6-P binding to the transporter. The recent cloning of a human putative Glc-6-P carrier exhibiting homologies with bacterial phosphoester transporters, such as Escherichia coli UhpT (a Glc-6-P translocase), is compatible with the fact that two cysteine residues are important for the bacterial Glc-6-P transport.  相似文献   

6.
N-Ethylmaleimide (NEM) inhibited the H(+)-ATPase (EC 3.6.1.35) from Kluyveromyces lactis with a second-rate constant of 200 M-1 min-1. H(+)-ATPase was partially protected by Mg-ADP. Low concentrations of Mg protected ATPase from the effects of NEM, while high Mg sensitized ATPase to NEM. The reaction of 14C-NEM with the native enzyme modified three cysteine residues/monomer, two of which were involved in 80% of the inactivation of the enzyme. In the presence of Mg-ADP, NEM binding to the first residue had only a slight effect on the activity (10-20% inhibition). After further incubation, the modification of a second cysteine residue (probably cys-221) inactivated the ATPase. Methyl methanethiosulfonate did not inhibit the H(+)-ATPase but resulted in a NEM-resistant H(+)-ATPase. There seems to be at least one cys (probably cys-532) at, or near, the nucleotide binding site of the H(+)-ATPase, which does not appear to be essential for activity. Modification of a second cys residue (cys-221) also resulted in inactivation by NEM; this residue was not protected by ADP and thus probably is not at the ATP binding site.  相似文献   

7.
Studies of the yeast protein farnesyltransferase (FTase) have shown that the enzyme preferentially farnesylates proteins ending in CAAX (C = cysteine, A = aliphatic residue, X = cysteine, serine, methionine, alanine) and to a lesser degree CAAL. Furthermore, like the type I protein geranylgeranyltransferase (GGTase-I), FTase can also geranylgeranylate methionine- and leucine-ending substrates both in vitro and in vivo. Substrate overlap of FTase and GGTase I has not been determined to be biologically significant. In this study, specific residues that influence the substrate preferences of FTase have been identified using site-directed mutagenesis. Three of the mutations altered the substrate preferences of the wild type enzyme significantly. The ram1p-74D FTase farnesylated only Ras-CIIS and not Ras-CII(M,L), and it geranylgeranylated all three substrates as well or better than wild type. The ram1p-206DDLF FTase farnesylated Ras-CII(S,M,L) at wild type levels but could no longer geranylgeranylate the Ras-CII(M,L) substrates. The ram1p-351FSKN FTase farnesylated Ras-CIIS and Ras-CIIM but not Ras-CIIL. The ram1p-351FSKN FTase was not capable of geranylgeranylating the Ras-CII(M,L) substrates, giving this mutant the attributes of the dogmatic FTase that only farnesylates non-leucine-ending CAAX substrates and does not geranylgeranylate any substrate. These results suggest that the isoprenoid and protein substrate specificities of FTase are interrelated. The availability of a mutant FTase that lacked substrate overlap with the protein GGTase-I made possible an analysis of the role of substrate overlap in normal cellular processes of yeast, such as mating and growth at elevated temperatures. Our findings suggest that neither farnesylation of leucine-ending CAAX substrates nor geranylgeranylation by the FTase is necessary for these cellular processes.  相似文献   

8.
5-Aminolaevulinate dehydratase (ALAD) is a homo-octameric metallo-enzyme that catalyses the formation of porphobilinogen from 5-aminolaevulinic acid. The structure of the yeast enzyme has been solved to 2.3 A resolution, revealing that each subunit adopts a TIM barrel fold with a 39 residue N-terminal arm. Pairs of monomers wrap their arms around each other to form compact dimers and these associate to form a 422 symmetric octamer. All eight active sites are on the surface of the octamer and possess two lysine residues (210 and 263), one of which, Lys 263, forms a Schiff base link to the substrate. The two lysine side chains are close to two zinc binding sites one of which is formed by three cysteine residues (133, 135 and 143) while the other involves Cys 234 and His 142. ALAD has features at its active site that are common to both metallo- and Schiff base-aldolases and therefore represents an intriguing combination of both classes of enzyme. Lead ions, which inhibit ALAD potently, replace the zinc bound to the enzyme's unique triple-cysteine site.  相似文献   

9.
The Ser-beta 174 residue of the Escherichia coli H(+)-ATPase beta subunit has been shown to be near the catalytic site together with Gly-beta 149, Gly-beta 172, Glu-beta 192, and Val-beta 198 (Iwamoto, A., Park, M.-Y., Maeda, M., and Futai, M. (1993) J. Biol. Chem. 268, 3156-3160). In this study, we introduced various residues at position 174 and found that the larger the side chain volume of the residue introduced, the lower the enzyme activity became. The Phe-beta 174 mutant was defective in energy coupling between catalysis and transport, whereas the Leu-beta 174 mutant could couple efficiently, although both mutants had essentially the same ATPase activities (approximately 10% of the wild type). The defective energy coupling of the Phe-beta 174 mutant was suppressed by the second mutation (Arg-alpha 296-->Cys) in the alpha subunit. The Cys-alpha 296/Phe-beta 174 mutant had essentially the same membrane ATPase activity as the Phe-beta 174 single mutant when assayed under the conditions that stabilize the double mutant enzyme. These results indicate the importance of the alpha/beta interaction, especially that between the regions near Arg-alpha 296 and Ser-beta 174, for energy coupling in the H(+)-ATPase. The 2 residues (Ser-beta 174 and Arg-alpha 296) may be located nearby at the interface of the two subunits. About 1 mol of N-[14C]ethylmaleimide could bind to 1 mol of the alpha subunit of Cys-alpha 296/Phe-beta 174 or Cys-alpha 296 mutant ATPase, but could not inhibit the enzyme activity. This is the first intersubunit mutation/suppression approach to ATPase catalysis and its energy coupling.  相似文献   

10.
A superfamily of growth factor and cytokine receptors has recently been identified, which is characterized by four spatially conserved cysteine residues, a tryptophan-serine motif (WSXWS) in the extracellular domain, and a proline-rich cytoplasmic domain. The high affinity human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (hGM-CSFR) consists of two subunits, alpha (hGM-CSFR alpha) and beta (hGM-CSFR beta), both of which are members of the receptor superfamily. In this study, we prepared mutations in conserved amino acids of the receptor subunit necessary for GM-CSF binding (hGM-CSFR alpha) and analyzed mutant receptors for low affinity binding, internalization, and high affinity binding when complexed with the beta subunit. Mutations in the cytoplasmic domain did not affect GM-CSF binding or receptor internalization. Mutation of a single conserved serine residue within the WSXWS motif diminishes cell surface receptor expression but not ligand binding. Mutation of either the second or third conserved cysteine residue of hGM-CSFR alpha resulted in complete loss of low affinity binding; however, co-expression of the cysteine 2 mutant with hGM-CSFR beta yielded a high affinity receptor complex. Since neither the cysteine 2 mutant nor the beta subunit can bind ligand alone, this result suggests that hGM-CSFR alpha and hGM-CSFR beta exist in a preformed heterodimeric protein complex on the plasma membrane.  相似文献   

11.
F1F0-ATP synthases utilize protein conformational changes induced by a transmembrane proton gradient to synthesize ATP. The allosteric cooperativity of these multisubunit enzymes presumably requires numerous protein-protein interactions within the enzyme complex. To correlate known in vitro changes in subunit structure with in vivo allosteric interactions, we introduced the beta subunit of spinach chloroplast coupling factor 1 ATP into a bacterial F1 ATP synthase. A cloned atpB gene, encoding the complete chloroplast beta subunit, complemented a chromosomal deletion of the cognate uncD gene in Escherichia coli and was incorporated into a functional hybrid F1 ATP synthase. The cysteine residue at position 63 in chloroplast beta is known to be located at the interface between alpha and beta subunits and to be conformationally coupled, in vitro, to the nucleotide binding site > 40 A away. Enlarging the side chain of chloroplast coupling factor 1 beta residue 63 from Cys to Trp blocked ATP synthesis in vivo without significantly impairing ATPase activity or ADP binding in vitro. The in vivo coupling of nucleotide binding at catalytic sites to transmembrane proton movement may thus involve an interaction, via conformational changes, between the amino-terminal domains of the alpha and beta subunits.  相似文献   

12.
By site-directed mutagenesis on human cytidine deaminase (CDA), five mutant proteins were obtained: C65A, C99A, C102A, E67D and E67Q. The three cysteine mutants were completely inactive, whereas E67D and E67Q showed a specific activity about 200- and 200000-fold lower, respectively, than the wild-type CDA. Zinc analysis revealed that only E67D, E67Q and C65A contained 1 mol Zn2+/mol subunit as in the wild-type CDA. Kinetic measurements with the specific carboxylic group reagent N-ethoxy-carbonyl-2-ethoxy-1,2-dihydroquinoline performed on wild-type CDA suggest that Glu67 is essential for the catalytic process. Furthermore, when both native and denatured CDA was titrated with 5,5'-dithiobis(2-nitrobenzoic acid) six sulfhydryl groups were detected, whereas in the denatured and reduced enzyme nine such groups were found, according to the sequence data. When p-hydroxymercuriphenyl sulfonate was used, nine sulfhydryl groups were detectable and the release of 1 mol of zinc per mole of CDA subunit was revealed by the metal indicator dye 4-(2-pyridylazo)resorcinol. It seems plausible that the limiting step for the maintenance of zinc in the active site is the formation of coordination between Cys99 and Cys102, whereas Cys65 could lead the zinc to the correct position and orientation within the active site.  相似文献   

13.
VanX, one of the five proteins required for the vancomycin-resistant phenotype in clinically pathogenic Enterococci, is a zinc-containing d-Ala-d-Ala dipeptidase. To identify potential zinc ligands and begin defining the active site residues, we have mutated the 2 cysteine, 5 histidine, and 4 of the 28 aspartate and glutamate residues in the 202 residue VanX protein. Of 10 mutations, 3 cause inactivation and greater than 90% loss of zinc in purified enzyme samples, implicating His116, Asp123, and His184 as zinc-coordinating residues. Homology searches using the 10 amino acid sequence SxHxxGxAxD, in which histidine and aspartate residues are putative zinc ligands, identified the metal coordinating ligands in the N-terminal domain of the murine Sonic hedgehog protein, which also exhibits an architecture for metal coordination identical to that observed in thermolysin from Bacillus thermoproteolyticus. Furthermore, this 10 amino acid consensus sequence is found in the Streptomyces albus G zinc-dependent N-acyl-d-Ala-d-Ala carboxypeptidase, an enzyme catalyzing essentially the same d-Ala-d-Ala dipeptide bond cleavage as VanX, suggesting equivalent mechanisms and zinc catalytic site architectures. VanX residue Glu181 is analogous to the Glu143 catalytic base in B. thermoproteolyticus thermolysin, and the E181A VanX mutant has no detectable dipeptidase activity, yet maintains near-stoichiometric zinc content, a result consistent with the participation of the residue as a catalytic base.  相似文献   

14.
Photoaffinity labeling by 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP) of the adenine nucleotide binding site(s) on isolated and complexed alpha and beta subunits of F1-ATPase from the thermophilic bacterium PS3 (TF1) is described. BzATP binds to both isolated alpha and beta subunits, to complexed beta subunit but not to complexed alpha subunit. Amino acid sequence determination of radiolabeled peptides obtained by proteolytic digestion of [gamma-32P]BzATP-labeled alpha subunit indicates that residues on both the amino-terminal (residues A41-E67) and carboxy-terminal (residues Q422-Q476) were modified by BzATP. One of the residues in the carboxy-terminal modified by BzATP is most probably alpha Q422. Although the binding stoichiometry of 1 mol of BzATP incorporated by either isolated or complexed beta subunit was maintained, the spatial conformation of the polypeptide determines which amino acid residue(s) is more accessible to the reactive radical. CNBr derived fragments beta G10-M64, beta E75-M233, and beta D390-M469 were labeled with the isolated beta subunit. With complexed beta subunit the label was found only in CNBr fragments: beta E75-M233 and beta G339-M389. The locations where the covalently bound BzATP was found, in the soluble and assembled subunits, indicate that different conformational states exist. In the isolated form of the alpha and beta subunits the amino- and carboxy-termini can fold and reach the central domain of the polypeptide, the domain containing the adenine nucleotide binding site. When alpha combines with beta to form the alpha 3 beta 3 core complex the new conformation of the subunits is such that covalent labeling by BzATP of alpha and of the amino terminal of beta subunit is excluded.  相似文献   

15.
Seven arginine residues are conserved in all the tetracycline/H+ antiporters of Gram-negative bacteria. Four (Arg67, -70, -71, and -127) of them are located in the putative cytoplasmic loop regions and three (Arg31, -101, and -238) in the putative periplasmic loop regions [Eckert, B., and Beck, C. F. (1989) J. Biol. Chem. 264, 11663-11670]. These arginine residues were replaced by alanine, lysine, or cysteine one by one through site-directed mutagenesis. None of the mutants showed significant alteration of the protein expression level. The mutants resulting in the replacement of Arg31, Arg67, Arg71, and Arg238 with either Ala, Cys, or Lys retained tetracycline resistance levels comparable to that of the wild type. Among them, only the Arg238 --> Ala mutant showed very low transport activity in everted membrane vesicles, probably due to the instability of the mutant protein. The replacement of Arg70 and Arg127 with Ala or Cys resulted in a drastic decrease in the drug resistance and almost complete loss of the transport activity, while the Lys replacement mutants retained significant resistance and transport activity, indicating that the positively charged side chains at these positions conferred the transport function. On the other hand, neither the Ala, Cys, nor Lys replacement mutant of Arg101 exhibited any drug resistance or transport activity. As for the reactivity of the Cys replacement mutants, only two (Arg71 --> Cys and Arg101 --> Cys) were not reactive with NEM, the other five mutants being highly or moderately reactive. The reactivity of the cysteine-scanning mutants around Arg101 with NEM revealed that Arg101 is located in transmembrane helix IV. It is not likely that Arg101 confers the protein folding through a salt bridge with a transmembrane acidic residue because no double mutants involving Arg101 --> Ala and the replacement of one of three transmembrane acidic residues (Asp15, Asp84, and Asp285) showed the recovery of any tetracycline resistance or transport activity. The effect of tetracycline on the [14C]NEM binding to the combined mutants S65C/R101A and L97C/R101A suggests that Arg101 may cause a substrate-induced conformational change of the putative exit gate of TetA(B).  相似文献   

16.
Ras proteins, fungal mating pheromones, and other proteins terminating in the sequence CaaX (where C is Cys, a is any aliphatic amino acid, and X is the C-terminal residue) are posttranslationally prenylated. Farnesyl-protein transferase (FPTase) transfers the farnesyl moiety of farnesyl pyrophosphate (FPP) to the thiol of the CaaX box cysteine in a reaction that requires Zn2+ and Mg2+. We have created mutations in conserved amino acids of the yeast Ram1 protein to identify residues important for Zn2+-dependent FPTase activity. Wild-type and mutant Ram1 proteins were expressed as operon fusions in bacteria, and FPTase activity was measured. Mutations in conserved residues Glu256, His258, Asp307, Cys309, Asp360, and His363 reduce FPTase activity. Asp307, Cys309, and His363 correspond to the residues that have been shown to coordinate Zn2+ in mammalian FPTase. The H258N mutant enzyme exhibited an increased sensitivity to the Zn2+ chelator 1,10-phenanthroline, required higher concentrations of Zn2+ to restore activity to the apoenzyme, and had a 10-fold reduction in catalytic efficiency. The decreases in FPTase activity observed do not appear to be caused by major structural perturbations because the mutants were stably expressed and retained the ability to interact with Ram2p during purification. The FPTase activity of the mutants measured in vitro correlated well with their ability to complement the mating and growth defects of a ram1Delta strain in vivo.  相似文献   

17.
The epitopes recognised by two monoclonal antibodies (mAb 279 and mAb 299), specific for the beta subunit of bovine thyroid-stimulating hormone (bTSH), have been localised using a technique in which the tyrosine residues in the bTSH beta subunit were subjected to modification when the bTSH beta subunit was complexed with either mAb or in the free, unbound state. The epitope recognised by mAb 279 was localised to the C-terminal region of bTSH beta with the tyrosine residue Tyr104 protected from modification by the presence of this mAb. In addition, the experimental results indicate that the tyrosine residues Tyr18 and/or Tyr112 are also involved in the mAb 279 epitope. The epitope recognised by mAb 299 was localised to the region 59-74 of bTSH beta as both Tyr59 and Tyr74 were protected from modification by the presence of this mAb. Since both mAbs have been previously found to inhibit receptor binding, the sequence regions/amino acid positions recognised by these mAbs are likely to represent determinants for receptor binding. Moreover, these data indicate that the identified amino acid residues are located on the surface of the molecule, consistent with predictions of the tertiary structure of the bTSH beta subunit based on the recently elucidated X-ray crystal structure of human chorionic gonadotropin.  相似文献   

18.
The catalytic properties of cysteine residues Cys46 and Cys165, which form intersubunit disulfide bonds in the peroxidatic AhpC protein of the alkyl hydroperoxide reductase (AhpR) system from Salmonella typhimurium, have been investigated. The AhpR system, composed of AhpC and a flavoprotein reductase, AhpF, catalyzes the pyridine nucleotide-dependent reduction of organic hydroperoxides and hydrogen peroxide. Amino acid sequence analysis of the disulfide-containing tryptic peptide demonstrated the presence of two identical disulfide bonds per dimer of oxidized AhpC located between Cys46 on one subunit and Cys165 on the other. Mutant AhpC proteins containing only one (C46S and C165S) or no (C46,165S) cysteine residues were purified and shown by circular dichroism studies to exhibit no major disruptions in secondary structure. In NADH-dependent peroxidase assays in the presence of AhpF, the C165S mutant was fully active in comparison with wild-type AhpC, while C46S and C46,165S displayed no peroxidatic activity. In addition, only C165S was oxidized by 1 equiv of hydrogen peroxide, giving a species that was stoichiometrically reducible by NADH in the presence of a catalytic amount of AhpF. Oxidized C165S also reacted rapidly with a stoichiometric amount of the thiol-containing reagent 2-nitro-5-thiobenzoic acid to generate a mixed disulfide, and was susceptible to inactivation by hydrogen peroxide, strongly supporting its identification as a cysteine sulfenic acid (Cys46-SOH). The lack of reactivity of the C46S mutant toward peroxides was not a result of inaccessibility of the remaining thiol as demonstrated by its modification with 5, 5'-dithiobis(2-nitrobenzoic acid), but could be due to the lack of a proximal active-site base which would support catalysis through proton donation to the poor RO- leaving group. Our results clearly identify Cys46 as the peroxidatic center of AhpC and Cys165 as an important residue for preserving the activity of wild-type AhpC by reacting with the nascent sulfenic acid of the oxidized protein (Cys46-SOH) to generate a stable disulfide bond, thus preventing further oxidation of Cys46-SOH by substrate.  相似文献   

19.
Pyridine nucleotide transhydrogenase (EC 1.6.1.1) from Escherichia coli was investigated with respect to the role of glutamic and aspartic acid residues reactive to N,N'-dicyclohexylcarbodiimide (DCCD) and potentially involved in the proton-pumping mechanism of the enzyme. The E. coli transhydrogenase consists of an alpha (510 residues) and a beta (462 residues) subunit. DCCD reacts with the enzyme to inhibit catalytic activity and proton pumping. This reagent modifies Asp alpha 232, Glu alpha 238, and Glu alpha 240 as well as amino acid residue(s) in the beta subunit. Using the cloned and overexpressed E. coli transhydrogenase genes (Clarke, D. M., and Bragg, P. D. (1985) J. Bacteriol. 162, 367-373), Asp alpha 232 and Glu alpha 238 were replaced independently by site-specific mutagenesis. In addition, Asp alpha 232, Glu alpha 238, and Glu alpha 240 were replaced to generate triple mutants. The specific catalytic activities of the mutant transhydrogenases alpha D232N, alpha D232E, alpha D232K, alpha D232H, alpha E238K, and alpha E238Q as well as of the triple mutants alpha D232N, alpha E238Q, alpha E240Q and alpha D232H, alpha E238Q, alpha E240Q were in the range of 40-90% of the wild-type activity. Proton-pumping activity was present in all mutants. Examination of the extent of subunit modification by [14C]DCCD revealed that the label was still incorporated into both alpha and beta subunits in the Asp alpha 232 mutants, but that the alpha subunit was not labeled in the triple mutants. Catalytic and proton-pumping activities were nearly insensitive to DCCD in the triple mutants. This suggests that loss of catalytic and proton-pumping activities is associated with modification of the aspartic and glutamic acid residues of the alpha subunit. In the presence of the substrate NADPH, the rate of modification of the beta subunit by [14C]DCCD was increased, and there was a greater extent of enzyme inactivation. By contrast, NADH and 3-acetylpyridine-NAD+ protected the catalytic activity of the transhydrogenase from inhibition by DCCD. The protection was particularly marked in the E238Q and E238K mutants. It is concluded that the Asp alpha 232, Glu alpha 238, and Glu alpha 240 residues are not essential for catalytic activity or proton pumping. The inactivation by DCCD is likely due to the introduction of a sterically hindering group that reacts with the identified acidic residues close to the NAD(H)-binding site.  相似文献   

20.
The complete amino acid sequence of pokeweed leaf chitinase-A was determined. First all 11 tryptic peptides from the reduced and S-carboxymethylated form of the enzyme were sequenced. Then the same form of the enzyme was cleaved with cyanogen bromide, giving three fragments. The fragments were digested with chymotrypsin or Staphylococcus aureus V8 protease. Last, the 11 tryptic peptides were put in order. Of seven cysteine residues, six were linked by disulfide bonds (between Cys25 and Cys74, Cys89 and Cys98, and Cys195 and Cys208); Cys176 was free. The enzyme consisted of 208 amino acid residues and had a molecular weight of 22,391. It consisted of only one polypeptide chain without a chitin-binding domain. The length of the chain was almost the same as that of the catalytic domains of class IL chitinases. These findings suggested that this enzyme is a new kind of class IIL chitinase, although its sequence resembles that of catalytic domains of class IL chitinases more than that of the class IIL chitinases reported so far. Discussion on the involvement of specific tryptophan residue in the active site of PLC-A is also given based on the sequence similarity with rye seed chitinase-c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号