共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
针对经验模态分解在对脑电数据进行处理时存在的端点效应问题,提出了一种新的端点效应抑制方法。该方法将支持向量机和数据加窗进行结合对原始信号进行处理。该方法包括三个步骤:采用支持向量机对原始信号两端分别延拓有限个极大值和极小值;用窗函数对延拓后的数据进行加窗处理;分别对原始信号以及支持向量机延拓和加窗处理后的信号进行经验模态分解,并舍弃各阶固有模态函数中延拓的数据点。为了分析所提方法的性能,以正交性作为量化评价指标对比不同方法的性能。以人工信号和实际脑电信号为实验对象进行的模拟实验表明,相比于其他几种方法,提出的方法可有效抑制经验模态分解处理过程中端点效应问题。 相似文献
3.
经验模态分解(EMD)是一种先进的数据处理方法,对脑电信号(EEG)等非线性非平稳信号的处理非常有效。但是其在利用三次样条曲线构造上下包络时,端点附近的包络存在严重的摆动。针对该问题,在镜面延拓算法的基础上,提出了二次延拓算法。根据邻近端点的数据计算出该信号在端点处的拟合函数;利用该拟合函数在左右端点各延拓出一个极值点;采用镜面延拓算法对延拓后的信号进行EMD分解。算法考虑了信号端点处的变化趋势,使得端点处的延拓更加合理,从而使三次样条曲线在端点处不会出现大的摆动。仿真结果表明,该算法能有效地对脑电信号进行分解。 相似文献
4.
针对经验模态分解过程中产生的端点效应问题,提出了将镜像延拓和支持向量回归机相结合的端点延拓改进方法。利用支持向量回归机对原始信号的极值点数据序列两端进行预测,用镜像延拓法确定所预测极值点的位置。该改进方法解决了支持向量回归机对长数据序列预测不准确,以及镜像延拓法对端点不是极值点的短数据序列处理效果不佳等问题。引入六个评价标准,对端点延拓方法的效果进行了分析。结果表明,该改进方法能有效地抑制经验模态分解产生的端点效应。 相似文献
5.
6.
目前的EMD分解中,延长左右两端数据主要是通过各种数学拟合的方式(镜像延拓、多项式拟合、神经网络延拓等)来实现。在实际中,通过延长信号的采样时间,同样能够使端点数据延长,从而抑制EMD分解时的端点效应。以周期谐波函数为例,通过数值实验,将用数学拟合延长两端数据的方法(以极值点的镜像延拓为例)与直接截取两端数据的方法进行比较。同时,为了比较两种数据延长方法的效果,分别将延长后的数据进行EMD分解,将实际的EMD分解结果作为矩阵,计算与理想分解结果之间的相关系数。得出以下结论:若左右各截取半个信号周期长度的数据信号,则得到的分解结果优于通过端点延拓方法得到的EMD分解结果,且截取的点数越多,得到的结果越接近理想的分解结果。 相似文献
7.
基于EMD与LS-SVM的风电场短期风速预测 总被引:2,自引:0,他引:2
为了提高风电场风速短期预测的精度,提出了将经验模式分解与数据挖掘方法相结合对风速时间序列进行建模预测.对风速时间序列进行经验模式分解,使之分解为若干不同频带的本征模式分量.对不同频带的平稳分量建立相应的最小二乘支持向量机预测模型,将各模型的预测值等权求和得到最终预测值.仿真实验结果表明,风电场短期风速预测的MAPE为1.507%,提高了此类预测的精度,表明了该方法的有效性. 相似文献
8.
9.
基于LS-SVM的图像去噪方法 总被引:3,自引:0,他引:3
支持向量机是一种基于统计学习理论的机器学习方法,该方法已广泛用于解决分类问题和回归问题。文中将最小二乘支持向量机应用于图像去噪中,并同小波去噪及中值滤波进行了比较分析。仿真结果表明,该方法能较好的保存图像细节,并具有很好的泛化能力。 相似文献
10.
针对复杂工业环境中高温难以直接测量的问题,提出一种基于最小二乘支持向量机(LS—SVM)的单通道颜色测温方法。利用高温物体的颜色与温度之间复杂的非线性映射关系,采用绿色单通道图像样本特征值建立LS—SVM回归模型实现颜色测温,并与BP神经网络模型进行比较。仿真结果表明,LS—SVM测温模型具有良好的非线性建模和泛化能力。该方法能够间接得到温度测量值,并且具有较高的预测精度,为高温测量提供一个新的有效手段。 相似文献
11.
对于生物证据句子抽取问题,传统特征和贝叶斯分类模型构建的抽取系统效率不高,导致抽取结果的召回率较低。为此,针对单句抽取问题和多句混合抽取问题,分别构建2套系统。利用最小二乘支持向量机模型结合新的特征组合和句子过滤模块构建系统1,解决传统特征涵盖不全面的问题,并在系统1中融入条件随机场模型,融合候选句判别规则建立系统2,解决连续多句合并的问题。实验结果表明,在单句抽取问题上,相比贝叶斯模型的基准系统,系统1召回率和F值分别提高39.7%和12.9%,在多句混合抽取问题上,相比基于正例和无标记样本学习系统,系统2的召回率提高了37.1%。 相似文献
12.
广义预测控制(Generalized Predictive Control,GPC)汲取了DMC(Dynamic Matrix Control)、MAC(Model Algorithmic Control)中的多步预测优化策略,抗负载扰动、随机噪声、时延变化等能力强,且选取模型参数少,利于控制。然而,据研究发现GPC对模型失配问题有一定的局限性。最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)是在支持向量机的研究基础上发展而来的,具有良好的回归、分类功能。在认真学习LS-SVM原理的基础上,提出了基于LS-SVM误差补偿的广义预测控制,并选择两个模型进行了仿真实验。通过与常规GPC的比较,表明了该算法具有更优的控制性能。 相似文献
13.
一种基于LS-SVM的特征提取新方法及其在智能质量控制中的应用 总被引:1,自引:0,他引:1
提出一种基于最小二乘支持向量机(LS-SVM)的特征提取新方法,并将其成功应用到智能质量控制领域。首先,将线性特征提取公式表达成与LS-SVM回归算法中相同的形式;再遵循SVM方法将数据集由原输入空间映射到高维特征空间,进而使用该技巧通过线性形式实现非线性特征提取。然后,用常规控制图提取出一个含有6种模式、50维特征的仿真数据集用于测试,通过LS-SVM特征提取后,原数据集的特征被降到了3维并保留了原80%的分类信息。最后,用BP分类器对特征提取后的样本进行识别,其结果优于新型RSFM网络直接对原始样本进行识别的效果。仿真实验结果表明了LS-SVM特征提取方法的可行性和有效性。 相似文献
14.
本文首先研究了面向服务的体系结构及其在地理信息系统中的应用.而后在参考已有的地理信息系统的SOA架构的基础上,提出了将改进的最小二乘支撑向量回归机应用到该信息系统的统计分析服务器中,给统计分析服务器的设计提供了一种新的思路. 相似文献
15.
该文提出了一种基于偏最小二乘(PLS)的支持向量机(SVM)多分类方法,该算法利用偏最小二乘思想对样本进行预处理,消除了样本属性之间的相关性,而且得到的综合属性与类信息的相关程度达到最大。通过实验可以看出,该方法不仅可以减少用支持向量机进行分类过程中的支持向量数目,而且当样本属性较多时,可以提高一定的识别率。 相似文献
16.
17.
最小二乘支持向量机(LS-SVM)是支持向量机(SVM)的一种扩展,其算法简练,计算速度快;利用LS-SVM进行特征提取,可以有效地降低输入样本维数,缩减模型的运算时间,同时LS-SVM又具有优越的非线性回归能力;为实现氧化铝高压溶出过程中苛性比值在线测量,建立了一种基于LS-SVM的软测量模型,并将此模型应用于实际生产;工业数据的仿真结果表明该模型具有较高的预测精度和范化能力,能满足在线检测、实时控制的要求。 相似文献
18.
针对二乘向量机(LS-SVM)对所有样本误差惩罚相同、预测精度不高的问题,提出了一种基于AdaBoost模型的二乘向量回归机。该算法使用多个二乘向量机按照某种学习规则协调各二乘向量机的输出,同时根据回归精度,建立各二乘向量机中每一个样本的误差惩罚权重,以突出样本的惩罚差异性,提高算法的泛化性能。实验结果表明,提出的算法提高了二乘向量回归机的预测精度,优化了学习机的性能。 相似文献
19.
分析了利用支持向量回归求解多分类问题的思想,提出了一种基于局部密度比权重设置模型的加权最小二乘支持向量回归模型来单步求解多分类问题:该方法先分别对类样本中每类样本利用局部密度比权重设置模型求出每个样本的权重隶属因子,然后运用加权最小二乘支持向量回归算法对所有样本进行训练,获得回归分类器。为验证算法的有效性,对UCI三个标准数据集以及一个随机生成的数据集进行实验,对比了多种单步求解多分类问题的算法,结果表明,提出的模型分类精度高,具有良好的鲁棒性和泛化性能。 相似文献
20.
提出以图像的梯度直方图和颜色直方图作为分类特征,分析最小二乘支持向量机(LS-SVM)算法以及该算法与传统SVM算法的区别,比较传统分类算法与LS-SVM算法的分类准确度,将LS-SVM算法用于图像垃圾邮件过滤。实验结果表明,该方法能提高图像垃圾邮件的检测率。 相似文献