共查询到14条相似文献,搜索用时 67 毫秒
1.
2.
针对复杂的视频场景中目标追踪易受环境干扰的问题,提出了一种基于混合高斯模型和改进的C-V(Chan-Vese)模型相结合的新方法。其中采用了混合高斯模型算法更新背景,检测出运动目标轮廓。然后对提取出的目标轮廓进行后处理,标定出运动目标的质心和运动区域。将运动区域作为初始化曲线,用改进的C-V模型对运动目标进行拟合。结果证明了以标定出的运动目标区域为初始化曲线可以有效地提高轮廓曲线的收敛速度;对于灰度不均匀的和含有噪声的图像,改进的模型的分割效果也要好于C-V模型和LCV模型。 相似文献
3.
基于区域的局部二值拟合模型在处理灰度不均匀图像方面有较大优势,但其只考虑原始图像灰度的平均统计信息,对于包含大量噪声的图像通常很难获得理想的效果。为克服上述缺陷,提出一种基于原始图像和差分图像统计信息的分割模型。该模型在原始图像灰度统计信息的基础上,加入差分图像信息,分别对原始图像和差分图像构造以高斯函数为核函数的能量方程,并运用梯度下降法求解,驱使活动轮廓向目标边缘演化。实验结果表明,与传统活动轮廓模型相比,该模型能正确提取含有噪声和信噪比低的图像,同时对初始轮廓曲线有更高的鲁棒性。 相似文献
4.
在现有的活动轮廓中,LBF模型、LIF模型和LGDF模型是著名的基于区域的模型。虽然能分割灰度不均匀的图像,但对活动轮廓的初始化和噪声较为敏感。针对该问题,提出一种融合全高斯和局部高斯概率信息的活动轮廓模型。首先由全局高斯模型的全局灰度拟合力和局部高斯模型的局部灰度拟合力的一个线性组合来构造水平集演化力,然后引入这两个拟合力的动态权重以达到该模型的灵活性,实验结果表明,该模型能分割灰度不均的图像,且允许灵活的轮廓初始化,抗噪声性强。 相似文献
5.
《计算机应用与软件》2013,(8)
C-V模型具有计算复杂度低、对初始化和噪声不敏感等优点,在处理图像的时候总是从全局的角度去考虑图像区域的灰度变化,从而导致难以分割灰度不均的图像。局部二元拟合(LBF)模型在处理灰度不均匀的图像分割方面有很大优势,但是LBF模型存在依赖初始轮廓大小、位置等缺点。针对C-V模型不能分割灰度不均图像和LBF模型敏感于轮廓初始化的问题,给出一个用偏微分方程表示的新的融合局部(LBF模型)和全局信息(改进的C-V模型)的活动轮廓模型。实践结果表明,新的模型对初始轮廓的敏感性低,能分割灰度不均的图像,且优于C-V模型,其分割效率明显高于LBF模型。 相似文献
6.
7.
基于区域的局部二值拟合模型只考虑图像灰度的平均值统计信息,然而由于图像中的噪声改变了图像的灰度分布,该类方法对于包含大量噪声的图像往往很难获得理想的效果。为了提高模型对于噪声的鲁棒性,提出了一种结合图像统计信息和梯度信息的局部活动轮廓模型。该模型在图像灰度的统计信息的基础上,加入图像梯度信息,分别构造以高斯函数为核函数的局部二值灰度拟合能量和局部二值梯度拟合能量,得到最终的能量泛函,并通过最小化该能量函数,驱使活动轮廓向目标边缘演化。实验结果表明,基于图像灰度和梯度的局部活动轮廓模型能够有效克服图像中弱边缘以及强噪声对于分割结果的影响,其分割精度高于同类方法。 相似文献
8.
活动轮廓模型广泛应用于图像分割和目标轮廓提取,基于边缘的测地活动轮廓(GAC)模型在提取边缘明显的物体时得到广泛的应用,但GAC演化过程中,迭代次数较多,耗时较长。针对这一问题,结合贝塞尔滤波理论,对GAC模型改进。首先,利用贝塞尔滤波对图像进行平滑处理,降低噪声;其次,基于贝塞尔滤波的边缘检测函数,构建新的边缘停止项,且并入到GAC模型中;最后,在构造的模型中同时加入反应扩散(RD)项以避免水平集重新初始化。实验结果表明,与多个基于边缘的模型相比,所提模型在保证分割结果精确度的同时,提高了时间效率,更适用于实际应用。 相似文献
9.
10.
LBF模型是一个著名的基于区域的活动轮廓模型。与PC(Piecewise Constant)模型不同,该模型引入了一个以高斯函数为核函数的局部二值拟合(Local Binary Fitting,LBF)能量。因为LBF能量能够获取图像的局部信息,所以LBF模型解决了PC模型不能处理灰度不均一图像的分割问题。提出了一个改进的LBF模型,它使用一个新的核函数代替高斯核函数。实验表明:与LBF模型比较,新模型减少分割时间约50%。 相似文献
11.
基于全局信息的活动轮廓模型不能有效分割灰度不均匀图像,而基于局部信息的活动轮廓模型对轮廓初始化位置比较敏感。为此,提出结合全局信息和局部信息,构造新的符号压力函数(Signed Pressure Force,SPF),替代Selective Binary and Gaussian Filtering Regularized Level Set(SBGFRLS)模型中的符号压力函数,同时构造一种新的气球力函数,并采用SBGFRLS水平集方法演化轮廓曲线来分割图像的方法。实验结果证明该方法能有效分割灰度不均图像,同时对轮廓初始化位置不敏感,对噪声有较好的抗干扰性。 相似文献
12.
13.
针对目前基于参数活动轮廓模型(PACM)的图像分割方法不能精确定位到角点,不连续边缘易受周围无关信息影响的缺陷,提出一种基于参数活动轮廓模型的图像分割新方法。该方法首先构造边缘保护项,将其引入到图像分割的活动轮廓模型中,保留拉普拉斯扩散项的切线方向分量;再引入两个权重参数控制切线方向和法线方向有偏的扩散,以提高分割的精度和效率。实验结果表明,该模型不仅能检测到弱边缘,精确定位到角点,而且能收敛到深度的凹形边界,降低无关信息对边缘不连续处的影响,防止边缘泄露,很好地保护图像细节,收敛的效率和准确率比边缘保护梯度向量流模型、法向梯度向量流模型及其改进模型有明显提高。 相似文献