共查询到18条相似文献,搜索用时 62 毫秒
1.
由于SIFT算法在寻找关键点时,只考虑了图像的局部特征,使得在具有复杂纹理背景的图像处理中,无法提取出具有代表性的特征点。针对这一问题,提出在提取关键点的时候,考虑特征点间的相关性,参照SSIFT算法缩小特征描述的维数,利用统计的方式缩短算法执行时间,使得算法能快速提取到具有代表性的关键点,滤掉纹理图案中的关键点。通过实验证明了算法的执行效率以及算法的普适性。 相似文献
2.
为解决RANSAC算法迭代次数过多导致图像配准精确率不高的问题,提出了一种改进的RANSAC图像配准算法。首先将参考图像和待配准图像进行NSCT变换分解成低频子带和高频子带。然后对高频子带运用矢量夹角算法和结构相似性(SSIM)来提取图像边缘特征点,对低频子带运用SIFT算法并设定合适的距离阈值来提取特征点。最后利用改进的RANSAC算法提高特征点匹配精度,选择出精匹配点对,实现图像配准。实验结果表明,该算法能有效地找到较多的匹配点对,准确地去除误匹配点对,明显地提高了配准精确度。 相似文献
3.
4.
提出了一种基于SIFT和Krawtchouk矩不变量的图像配准方法。通过SIFT关键点检测方法检测关键点;对每个关键点计算其邻域的Krawtchouk矩不变量,并将其构成描述关键点的特征向量;计算关键点特征向量之间的欧氏距离找出相匹配的关键点对。实验结果表明,该算法的配准性能与标准SIFT算法相当,而运算速度比标准SIFT算法有较大程度提高。 相似文献
5.
针对SIFT匹配算法和SIFT与RANSAC结合的匹配算法都存在不同程度误匹配的问题,提出一种基于局部SIFT特征点的双阈值匹配算法。设计变步长迭代准则获取SIFT双阈值,其中大阈值匹配获得一组稀疏的精确匹配,小阈值匹配获得一组可能存在误匹配的密集匹配。以精确匹配建立目标的形变约束模型,以此为基础从密集匹配中删除误匹配。通过这些正确的匹配点估计两幅图像之间的变换矩阵。为了降低算法所需时间,提高效率,通过分析图像的纹理变化,采用提取其变化最为剧烈的区域来代表整幅图像进行匹配运算。实验结果表明,该算法在图像存在平移、旋转等仿射变化情况下具有配准精度高,稳定和快速等特点。 相似文献
6.
SIFT和改进的RANSAC算法在图像配准中的应用 总被引:1,自引:0,他引:1
在机器人视觉系统中运用SIFT描述子对现实世界中的目标进行识别,这一研究已经取得了很大的进步。运用SIFT生成的图像特征向量的性能十分稳定,对旋转、缩放、平移是保持不变性的,对一定程度目标遮挡、光照变化、视点变化、杂物场景和噪声等也能保持很好的不变性。RANSAC算法早就已经是计算机视觉领域常用的一个进行矫正的标准方法,在标准的RANSAC算法基础上加入了假设评价,改进为R-RANSAC(The Randomized RANSAC)算法。对这两个方面进行论述,运用SIFT(尺度不变特征变换)算法对双目机器人的两幅视觉图像进行匹配,采用带SPRT的R-RANSAC改进算法对匹配过程进行优化,尽可能在短的时间里完成匹配矫正,进而加速整个配准的时间。 相似文献
7.
针对图像处理领域中遥感图像的配准问题,提出一种基于图像局部特征的快速、自动配准方法。该方法选取具有良好尺度、旋转不变性以及精确特征点定位能力的SIFT局部特征,使用其特征向量间的欧氏距离作为相似性度量进行特征点匹配,并依据仿射变换误差准则去除奇异匹配特征点对,采用仿射变换的几何模型,实现了遥感图像的快速自动配准。实验结果表明,方法是高效、精确以及稳定的。 相似文献
8.
基于改进尺度不变特征的图像局域几何配准研究 总被引:1,自引:0,他引:1
针对图像配准容易产生误配准、漏配准的问题,提出了基于改进尺度不变特征的图像局域几何配准。该方法改进了尺度不变特征,通过构建边缘尺度空间设计了尺度不变边缘特征变换,融合了尺度不变特征点和尺度不变边缘。以尺度不变特征为基础,搜寻图像间的局域图像变换,实现图像局域几何配准。实验表明,SIFT特征点和边缘信息互补能够提供更多的配准信息并减少错误配准;该方法对尺度、噪声、形变、光照等不敏感,能够配准移动目标,真实地反映图像的配准状况。 相似文献
9.
针对尺度不变特征变换(Scale Invariant Feature Transform,SIFT)算法图像配准时间长、匹配率低等问题,提出了重合区域图像极值特征提取法以及图像降采样特征配准法。在特征匹配的过程中,重点考虑重叠区域的特征匹配点对极值一致性约束条件,并利用差分尺度空间的局部单极值,以减小冗余特征点,节约特征提取与匹配时间;在此基础上,以图像尺度大小(选择180×180)作为缩放约束,对图像进行同比例插值缩小,并根据缩放后图像与原始图像变换矩阵之间的关系,计算出原始图像变换矩阵,实现图像的快速、精确配准。利用实例验证了所提方法的有效性和可行性。 相似文献
10.
针对高分辨率遥感图像中提取的特征点数目过大且易存在误匹配点的问题,提出了一种粗配准和精配准相结合的高分辨率遥感图像配准算法.首先对图像降采样处理后,提取大尺度空间下的SIFT特征点,求得仿射变换模型完成图像粗配准;然后对图像进行分块,利用SIFT方法对每幅子块图像提取特征点,并找到对应子块图像之间的匹配点对;之后利用特征点构建Delaunay三角网,计算每对子块图像之间的三角形相似度,构成相似矩阵,从中挑选相似度大的三角形对以构成精确匹配点对;最后利用得到的精确匹配点对实现最终的图像配准.该算法能够减少提取的特征点数且剔除更多的错误匹配点,从而进一步提高精确匹配点率.实验结果表明了算法的有效性. 相似文献
11.
12.
13.
针对尺度不变特征变换(SIFT)配准方法在处理SAR图像时精度不高的问题,提出一种基于改进SIFT的精确配准方法。在提取关键点SIFT描述子及其邻域多尺度自卷积矩不变特征的基础上,利用基于典型相关分析的融合算法对SIFT与矩不变特征进行融合,形成新的关键点描述子,使用阈值实现粗匹配,并结合关键点的距离与邻域灰度相关性构建相似矩阵,采用奇异值分解方法精确确定匹配点对,求出仿射变换模型参数,从而完成图像配准。实验结果表明,该方法的配准结果优于SIFT方法,且配准精度达到亚像素级。 相似文献
14.
15.
针对仿射尺度不变变换提取(ASIFT)算法计算效率低的问题,提出了一种大倾角航空倾斜影像自动匹配方法H-SIFT。该方法利用影像粗略外方位元素计算两幅待匹配影像之间的单应变换矩阵,对左影像进行二维射影变换得到其纠正影像以消除两幅影像之间的几何变形、尺度和旋转问题,再对左影像的纠正影像和右影像进行尺度不变特征变换(SIFT)。匹配时,为了适当提高正确匹配点对的数量,利用不严格的比值提纯法和左右一致性检验得到粗匹配点对,并利用随机一致性检验剔除误匹配。最后将左影像其纠正影像上的匹配点反算到左影像上。通过对国产五倾斜相机平台(SWDC-5)获取的三组典型城区航空倾斜影像数据进行实验,对于三组数据,该算法获得的正确匹配点对数量分别为ASIFT算法的2.18、1.31、1.70倍,该算法匹配耗时分别为ASIFT算法的0.93%、0.88%、0.97%。实验结果表明,与ASIFT算法相比,该算法获得的匹配点对在计算效率、数量和分布情况上都得到了显著提高。 相似文献
16.
在口服液灯检机杂质检测系统中,口服液瓶体由于履带搓瓶的急停会有轻微的抖动,造成高速工业摄像机拍摄的前后两帧口服液瓶体图像中位于相同空间位置的像素无法重合在一起,导致前后两帧图像做差分结果出现错误。由于口服液中的杂质很小,一般会达到微米级别,因此机械的扰动以及口服液瓶体上的污点都有可能因位置偏差对检测结果造成影响。采用尺度不变特征检测(SIFT)对系统采集的前后两帧图像进行位置配准。SIFT算法稳定性精度很高,适用于高精度口服液杂质检测系统。基于抖动幅度微弱,对该算法进行了一定的改进与简化,以获得最佳配准结果。在实际检测过程中算法稳定,检测结果准确率很高。 相似文献
17.
基于SIFT(尺度不变特征变换)特征匹配思想,提出了一种应用对极几何约束的图像特征配准算法。首先对图像提取SIFT特征点,然后通过欧氏距离估算对SIFT特征描述子进行初始匹配得到预匹配点集;采用基于单应矩阵的抽样算法计算初始基础矩阵,通过RANSAC算法计算精确的基础矩阵和匹配点集,进而实现图像配准。实验表明,该算法可以获得更准确的匹配点,得到精度较高的图像配准效果。 相似文献
18.
图像拼接在卫星图像遥感、医学图像处理都具有广泛的应用价值。利用SIFT作为图像局部特征,构建一种基于SIFT特征的仿射计算方法,利用网格覆盖匹配特征点,通过该方法在SIFT匹配特征点中选取仿射点,进而构建相应的仿射变换,通过仿射待选点建立拼接边缘,还给出了不同程度仿射变换的图像拼接方法来解决边缘图像仿射失真的问题。实验结果表明该方法可以克服传统方法的仿射不稳定问题,具有较好的稳定性和准确度。 相似文献