首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Imaging elementary events of calcium release in skeletal muscle cells   总被引:2,自引:0,他引:2  
In skeletal muscle cells, calcium release to trigger contraction occurs at triads, specialized junctions where sarcoplasmic reticulum channels are opened by voltage sensors in the transverse tubule. Scanning confocal microscopy was used in cells under voltage clamp to measure the concentration of intracellular calcium, [Ca2+]i, at individual triads and [Ca2+]i gradients that were proportional to calcium release. In cells stimulated with small depolarizations, the [Ca2+]i gradients broke down into elementary events, corresponding to single-channel currents of about 0.1 picoampere. Because these events were one-tenth to one-fifth the size of calcium sparks (elementary release events of cardiac muscle), skeletal muscle control mechanisms appear to be fundamentally different.  相似文献   

2.
Applying a brief repolarizing pre-pulse to a depolarized frog skeletal muscle fiber restores a small fraction of the transverse tubule membrane voltage sensors from the inactivated state. During a subsequent depolarizing test pulse we detected brief, highly localized elevations of myoplasmic Ca2+ concentration (Ca2+ "sparks") initiated by restored voltage sensors in individual triads at all test pulse voltages. The latency histogram of these events gives the gating pattern of the sarcoplasmic reticulum (SR) calcium release channels controlled by the restored voltage sensors. Both event frequency and clustering of events near the start of the test pulse increase with test pulse depolarization. The macroscopic SR calcium release waveform, obtained from the spark latency histogram and the estimated open time of the channel or channels underlying a spark, exhibits an early peak and rapid marked decline during large depolarizations. For smaller depolarizations, the release waveform exhibits a smaller peak and a slower decline. However, the mean use time and mean amplitude of the individual sparks are quite similar at all test depolarizations and at all times during a given depolarization, indicating that the channel open times and conductances underlying sparks are essentially independent of voltage. Thus, the voltage dependence of SR Ca2+ release is due to changes in the frequency and pattern of occurrence of individual, voltage-independent, discrete release events.  相似文献   

3.
The skeletal muscle relaxant dantrolene inhibits the release of Ca2+ from the sarcoplasmic reticulum during excitation-contraction coupling and suppresses the uncontrolled Ca2+ release that underlies the skeletal muscle pharmacogenetic disorder malignant hyperthermia; however, the molecular mechanism by which dantrolene selectively affects skeletal muscle Ca2+ regulation remains to be defined. Here we provide evidence of a high-affinity, monophasic inhibition by dantrolene of ryanodine receptor Ca2+ channel function in isolated sarcoplasmic reticulum vesicles prepared from malignant hyperthermia-susceptible and normal pig skeletal muscle. In media simulating resting myoplasm, dantrolene increased the half-time for 45Ca2+ release from both malignant hyperthermia and normal vesicles approximately 3.5-fold and inhibited sarcoplasmic reticulum vesicle [3H]ryanodine binding (Ki approximately 150 nM for both malignant hyperthermia and normal). Inhibition of vesicle [3H]ryanodine binding by dantrolene was associated with a decrease in the extent of activation by both calmodulin and Ca2+. Dantrolene also inhibited [3H]ryanodine binding to purified skeletal muscle ryanodine receptor protein reconstituted into liposomes. In contrast, cardiac sarcoplasmic reticulum vesicle 45Ca2+ release and [3H]ryanodine binding were unaffected by dantrolene. Together, these results demonstrate selective effects of dantrolene on skeletal muscle ryanodine receptors that are consistent with the actions of dantrolene in vivo and suggest a mechanism of action in which dantrolene may act directly at the skeletal muscle ryanodine receptor complex to limit its activation by calmodulin and Ca2+. The potential implications of these results for understanding how dantrolene and malignant hyperthermia mutations may affect the voltage-dependent activation of Ca2+ release in intact skeletal muscle are discussed.  相似文献   

4.
The skeletal and cardiac isoforms of the ryanodine receptor Ca2+ channel (RyRC) constitute the Ca2+ release pathway in sarcoplasmic reticulum of skeletal and cardiac muscles, respectively. A direct mechanical and a Ca(2+)-triggered mechanism (Ca(2+)-induced Ca2+ release) have been respectively proposed to explain the in situ activation of Ca2+ release in skeletal and cardiac muscle. In non-muscle cells, however, where the RyRC also participates in Ca2+ signalling, the mechanism of RyRC activation is unknown. Cyclic adenosine 5'-diphosphoribose (cADPR), which is present in many mammalian tissues, has been reported to induce Ca2+ release from ryanodine-sensitive intracellular Ca2+ stores in sea urchin eggs. Here we provide evidence that cADPR directly activates the cardiac but not the skeletal isoform of the RyRC. This, together with results on sea urchin eggs, suggests that cADPR is an endogenous activator of the non-skeletal type of RyRC and may thus have a role similar to inositol 1,4,5-trisphosphate in Ca2+ signalling.  相似文献   

5.
2-Hydroxycarbazole was shown to induce Ca2+ release from skeletal muscle and cardiac muscle sarcoplasmic reticulum at concentrations between 100-500 microM. This release was blocked by both 1 mM tetracaine and 30 microM ruthenium red which inhibit the ryanodine receptor or by pre-treatment with 10 mM caffeine which depletes the ryanodine receptor-containing Ca2+ stores. This, in addition to the fact that 2-hydroxycarbazole has little effect on Ca2+ ATPase activity, indicates that it activates Ca2+ release through the ryanodine receptor. The apparent EC50 value for release from both skeletal muscle and cardiac muscle sarcoplasmic reticulum was approximately 200 microM and maximal release occurred at 400-500 microM, making it approximately 20 times more potent than caffeine. The dose-dependency in the extent of Ca2+ release induced by 2-hydroxycarbazole was also apparently highly cooperative for both preparations. That 2-hydroxycarbazole was able to mobilize Ca2+ from non-muscle cell microsomes and in intact TM4 cells (which contain ryanodine receptors), makes this compound a more potent and commercially available alternative to caffeine in studying the role of this intracellular Ca2+ channel in a variety of systems.  相似文献   

6.
9-Methyl-7-bromoeudistomin D (MBED), the most powerful caffeine-like releaser of Ca2+ from skeletal muscle sarcoplasmic reticulum, induced Ca2+ release from the cardiac sarcoplasmic reticulum. MBED (5 microM) and caffeine (1 mM) caused rapid Ca2+ release from the fragmented cardiac sarcoplasmic reticulum in a Ca2+ electrode experiment. [3H]MBED bound to a single class of high-affinity binding sites in cardiac sarcoplasmic reticulum membranes (Kd = 150 nM). These results suggest that MBED binds to a specific binding site on cardiac sarcoplasmic reticulum membranes to induce Ca2+ release from the cardiac sarcoplasmic reticulum. Thus, MBED is a useful probe for characterizing Ca2+ release the channels not only in skeletal sarcoplasmic reticulum but also in cardiac sarcoplasmic reticulum.  相似文献   

7.
3H-Labeled 9-methyl-7-bromoeudistomin D ([3H] MBED), the most powerful inducer of Ca2+ release from sarcoplasmic reticulum (SR), was successfully prepared with a high specific activity of 10.2 Ci/mmol. [3H]MBED bound to terminal cisternae (TC) of skeletal muscle SR in a replacable and saturable manner, indicating the existence of its specific binding site. Caffeine inhibited the [3H]MBED binding to the TC-SR membranes from skeletal muscle with an IC50 value of 0.8 mM, in close agreement with a concentration that causes Ca2+ release from SR. Scatchard analysis gave values of KD = 40 nM and Bmax = 10 pmol/mg protein. The KD value was increased by caffeine, while that of Bmax was not changed, indicating a competitive mode of inhibition. Adenosine 5'-(beta, gamma-methylene)triphosphate enhanced [3H]MBED binding, but ryanodine and Ca2+ did not affect it. [3H]MBED binding to TC-SR membranes was inhibited by procaine, a representative blocker of Ca(2+)-induced Ca2+ release channels, whereas that was not changed by Mg2+, suggesting that procaine but not Mg2+ may exert its inhibitory effect on Ca(2+)-induced Ca2+ release by affecting the caffeine-binding sites. These results suggest that MBED shares the same binding site as that of caffeine in TC-SR. The [3H]MBED is the first radiolabeled ligand for caffeine-binding sites in Ca2+ release channels and thus may provide an essential biochemical tool for elucidating this site.  相似文献   

8.
Calcium release from the sarcoplasmic reticulum (SR) depending on depolarization of the transverse tubular membrane (TTM) caused by rapid ionic replacement was measured in skeletal muscle triadic vesicles using a stopped-flow apparatus and Fura-2, a membrane-impermeable Ca2+ indicator. Calcium release was triggered by an increase in the magnitude of depolarization. This Ca2+ release was inhibited by ruthenium red, digoxin and dantrolene, and enhanced by caffeine. Thus, Ca2+ release was found to occur through the SR Ca2+ release channel via TTM depolarization and to be able to cause skeletal muscle contraction. Calcium release curves could be divided into two phases. In contrast to other previous studies, in the fast phase the amount of released Ca2+ increased with an increase in the magnitude of depolarization but the Ca2+ release rate did not; on the other hand, in the slow phase the Ca2+ release rate increased but the amount of Ca2+ did not. Furthermore, the Ca2+ release rate was controlled by the luminal Ca2+ concentration of the SR only in the fast phase. These independent dual kinetics of Ca2+ release were explained by the calsequestrin regulation model.  相似文献   

9.
Rat liver mitochondria have a specific Ca2+ release pathway which operates when NAD+ is hydrolysed to nicotinamide and ADPribose. NAD+ hydrolysis is Ca(2+)-dependent and inhibited by cyclosporine A (CSA). Mitochondrial Ca2+ release can be activated by the prooxidant t-butylhydroperoxide (tbh) or by gliotoxin (GT), a fungal metabolite of the epipolythiodioxopiperazine group. Tbh oxidizes NADH to NAD+ through an enzyme cascade consisting of glutathione peroxidase, glutathione reductase, and the energy linked transhydrogenase, whereas GT oxidizes some vicinal thiols to the disulfide form, a prerequisite for NAD+ hydrolysis. We report now that rat skeletal muscle mitochondria also contain a specific Ca2+ release pathway activated by both tbh and GT. Ca2+ release increases with the mitochondrial Ca2+ load, is completely inhibited in the presence of CSA, and is paralleled by pyridine nucleotide oxidation. In the presence of tbh and GT, mitochondria do not lose their membrane potential and do not swell, provided continuous release and re-uptake of Ca2+ ('Ca2+ cycling') is prevented. These data support the notion that both tbh- and GT-induced Ca2+ release are not the consequence of an unspecific increase of the inner membrane permeability ('pore' formation). Tbh induces Ca2+ release from rat skeletal muscle less efficiently than from liver mitochondria indicating that the coupling between tbh and NADH oxidation is much weaker in skeletal muscle mitochondria. This conclusion is corroborated by a much lower glutathione peroxidase activity in skeletal muscle than in liver mitochondria. The prooxidant-dependent pathway promotes, under drastic conditions (high mitochondrial Ca2+ loads and high tbh concentrations), Ca2+ release to about the same extent and rate as the Na+/Ca2+ exchanger. This renders the prooxidant-dependent pathway relevant in the pathophysiology of mitochondrial myopathies where its activation by an increased generation of reactive oxygen species probably results in excessive Ca2+ cycling and damage to mitochondria.  相似文献   

10.
Excitation-contraction coupling in skeletal muscle requires the release of intracellular calcium ions (Ca2+) through ryanodine receptor (RyR1) channels in the sarcoplasmic reticulum. Half of the RyR1 channels are activated by voltage-dependent Ca2+ channels in the plasma membrane. In planar lipid bilayers, RyR1 channels exhibited simultaneous openings and closings, termed "coupled gating." Addition of the channel accessory protein FKBP12 induced coupled gating, and removal of FKBP12 uncoupled channels. Coupled gating provides a mechanism by which RyR1 channels that are not associated with voltage-dependent Ca2+ channels can be regulated.  相似文献   

11.
The ryanodine receptor (RyR)/Ca2+ release channel is an essential component of excitation-contraction coupling in striated muscle cells. To study the function and regulation of the Ca2+ release channel, we tested the effect of caffeine on the full-length and carboxyl-terminal portion of skeletal muscle RyR expressed in a Chinese hamster ovary (CHO) cell line. Caffeine induced openings of the full length RyR channels in a concentration-dependent manner, but it had no effect on the carboxyl-terminal RyR channels. CHO cells expressing the carboxyl-terminal RyR proteins displayed spontaneous changes of intracellular [Ca2+]. Unlike the native RyR channels in muscle cells, which display localized Ca2+ release events (i.e., "Ca2+ sparks" in cardiac muscle and "local release events" in skeletal muscle), CHO cells expressing the full length RyR proteins did not exhibit detectable spontaneous or caffeine-induced local Ca2+ release events. Our data suggest that the binding site for caffeine is likely to reside within the amino-terminal portion of RyR, and the localized Ca2+ release events observed in muscle cells may involve gating of a group of Ca2+ release channels and/or interaction of RyR with muscle-specific proteins.  相似文献   

12.
Rat brain microsomes accumulate Ca2+ at the expense of ATP hydrolysis. The rate of transport is not modulated by the monovalent cations K+, Na+, or Li+. Both the Ca2+ uptake and the Ca(2+)-dependent ATPase activity of microsomes are inhibited by the sulfated polysaccharides heparin, fucosylated chondroitin sulfate, and dextran sulfate. Half-maximal inhibition is observed with sulfated polysaccharide concentrations ranging from 0.5 to 8.0 micrograms/ml. The inhibition is antagonized by KCl and NaCl but not by LiCl. As a result, Ca2+ transport by the native vesicles, which in the absence of polysaccharides is not modulated by monovalent cations, becomes highly sensitive to these ions. Trifluoperazine has a dual effect on the Ca2+ pump of brain microsomes. At low concentrations (20-80 microM) it stimulates the rate of Ca2+ influx, and at concentrations > 100 microM if inhibits both the Ca2+ uptake and the ATPase activity. The activation observed at low trifluoperazine concentrations is specific for the brain Ca(2+)-ATPase; for the Ca(2+)-ATPases found in blood platelets and in the sarcoplasmic reticulum of skeletal muscle, trifluoperazine causes only a concentration-dependent inhibition of Ca2+ uptake. Passive Ca2+ efflux from brain microsomes preloaded with Ca2+ is increased by trifluoperazine (50-150 microM), and this effect is potentiated by heparin (10 micrograms/ml), even in the presence of KCl. It is proposed that the Ca(2+)-ATPase isoforms from brain microsomes is modulated differently by polysaccharides and trifluoperazine when compared with skeletal muscle and platelet isoforms.  相似文献   

13.
The pyrimidine nucleotide, uridine triphosphate (UTP), was tested with skinned skeletal muscle fibers in order to investigate the UTP-sensitive pathway of Ca2+ release from the sarcoplasmic reticulum. The presence of ryanodine (200 microM), ruthenium red (10 microM) or heparin (2.5 mg/ml) did not affect the tension elicited in the presence of UTP, demonstrating that the UTP-induced Ca2+ release involved neither ryanodine nor inositol triphosphate-sensitive channels. Drugs such as compound 48/80 or cyclopiazonic acid used to inhibit Ca2+-ATPase in its reverse function appeared to be, respectively, non-specific or without any inhibitory effect on the tension induced by UTP. Finally, the UTP-induced tension as well as the trifluoperazine-induced tension were abolished in the presence of spermidine (50 mM), supporting the hypothesis that the UTP-sensitive pathway of the SR Ca2+ release might occur through the uncoupled calcium ATPase.  相似文献   

14.
Effects of Au3+ on Ag(+)-induced contractures and Ca2+ release channel activity in the sarcoplasmic reticulum were studied in frog skeletal muscles. Single fibres spontaneously produced phasic and tonic contractures upon addition of 5-20 microM Ag+ or more than 50 microM Au3+. Simultaneous application of 5 microM Ag+ and 20 microM Au3+ inhibited contractures induced by Ag+. Au3+ applied immediately after development of Ag(+)-induced contractures shortened the duration of the phasic contracture and markedly decreased the subsequent tonic contracture. Pretreatment of fibres with Au3+ inhibited the Ag(+)-induced phasic contracture. Ca2+ release channels incorporated into planar lipid bilayers were activated in response to Au3+ at 20 to 200 microM. A close relationship was observed between Ca2+ release channel open probability and amplitude of the Au(3+)-induced tonic contracture. Channel activity was inhibited by 5 microM ruthenium red. We conclude that extracellular Au3+ at low concentrations modifies the interaction of Ag+ with voltage sensors in the transverse tubules to inhibit the Ag(+)-induced contracture and, if it enters the cell, Au3+ may directly activate the sarcoplasmic reticulum Ca2+ release channel to partially contribute to the tonic contracture.  相似文献   

15.
There is increasing evidence that Ca2+ release from sarcoplasmic reticulum (SR) of mammalian skeletal muscle is regulated or modified by several factors including ionic composition of the myoplasm. We have studied the effect of Cl- on the release of Ca2+ from the SR of rabbit skeletal muscle in both skinned psoas fibers and in isolated terminal cisternae vesicles. Ca2+ release from the SR in skinned fibers was inferred from increases in isometric tension and the amount of release was assessed by integrating the area under each tension transient. Ca2+ release from isolated SR was measured by rapid filtration of vesicles passively loaded with 45Ca2+. Ca2+ release from SR was stimulated in both preparations by exposure to a solution containing 191 mm choline-Cl, following pre-equilibration in Ca2+-loading solution that had propionate as the major anion. Controls using saponin (50 microg/ml), indicated that the release of Ca2+ was due to direct action of Cl- on the SR rather than via depolarization of T-tubules. Procaine (10 mM) totally blocked Cl-- and caffeine-elicited tension transients recorded using loading and release solutions having ([Na+] + [K+]) x [Cl-] product of 6487.69 mm2 and 12361.52 mm2, respectively, and blocked 60% of Ca2+ release in isolated SR vesicles. Surprisingly, procaine had only a minor effect on tension transients elicited by Cl- and caffeine together. The data from both preparations suggests that Cl- induces a relatively small amount of Ca2+ release from the SR by activating receptors other than RYR-1. In addition, Cl- may increase the Ca2+ sensitivity of RYR-1, which would then allow the small initial release of Ca2+ to facilitate further release of Ca2+ from the SR by Ca2+-induced Ca2+ release.  相似文献   

16.
The participation of sarcoplasmic reticulum Ca2+ release channels in the activation of Ca(2+)-sensitive K+ currents (IK(Ca)) by cyclic dibutyryl GMP was investigated in smooth muscle cells from the circular layer of guinea-pig gastric fundus. All experiments were performed in the presence of 3 microM nicardipine into the bath and low Ca2+ buffering capacity of the pipette-filling solution (pCa 7.4). Ruthenium red (10 microM) as well as its combination with 10 microM heparin abolished the cyclic GMP-induced activation of IK(Ca), while 10 microM heparin remained ineffective. Ryanodine (10 microM) and the subsequently added 1 microM thapsigargin induced a relatively small increase in IK(Ca) amplitudes. The addition of 10 microM ryanodine to 1 microM thapsigargin-containing bath solution caused a vast increase in IK(Ca). It is hypothesyzed that protein kinase G-induced vectorial Ca2+ flux from the cell bulk and sarcoplasmic reticulum Ca2+ stores toward the plasma membrane is realized by a spontaneous Ca(2+)-induced Ca2+ release from a superficially situated Ca2+ store.  相似文献   

17.
Volatile anesthetics vasodilate in part by direct action on vascular smooth muscle. Isoflurane-induced relaxation of portal vein smooth muscle involves alteration of membrane ionic currents that control cell excitability and contraction. Whole cell voltage clamp technique was used to examine outward Ca(2+)-activated K+ current (IK,Ca) in guinea pig portal vein cells. Isoflurane caused a concentration-dependent reduction in IK,Ca at steady-state conditions but had no significant effect on resting potential. Isoflurane transiently potentiated IK,Ca by a mechanism that may partly involve Ca2+ release from intracellular storage sites. The depression of IK,Ca by isoflurane may occur by direct action on the channel protein or on the lipid environment of the channel to alter conductance or kinetic properties. Since isoflurane reduces IK,Ca coincident with suppression of Ca2+ channel current, it was concluded that the depression of IK,Ca by isoflurane is of secondary importance to reduction in inward Ca2+ channel current. Potentiation of IK,Ca may preclude significant membrane activation during the onset of isoflurane's action.  相似文献   

18.
Calsequestrin is the major Ca(2+)-binding protein localized in the terminal cisternae of the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle cells. Calsequestrin has been purified and cloned from both skeletal and cardiac muscle in mammalian, amphibian, and avian species. Two different calsequestrin gene products namely cardiac and fast have been identified. Fast and cardiac calsequestrin isoforms have a highly acidic amino acid composition. The amino acid composition of the cardiac form is very similar to the skeletal form except for the carboxyl terminal region of the protein which possess variable length of acidic residues and two phosphorylation sites. Circular dichroism and NMR studies have shown that calsequestrin increases its alpha-helical content and the intrinsic fluorescence upon binding of Ca2+. Calsequestrin binds Ca2+ with high-capacity and with moderate affinity and it functions as a Ca2+ storage protein in the lumen of the SR. Calsequestrin has been found to be associated with the Ca2+ release channel protein complex of the SR through protein-protein interactions. The human and rabbit fast calsequestrin genes have been cloned. The fast gene is skeletal muscle specific and transcribed at different rates in fast and slow skeletal muscle but not in cardiac muscle. We have recently cloned the rabbit cardiac calsequestrin gene. Heart expresses exclusively the cardiac calsequestrin gene. This gene is also expressed in slow skeletal muscle. No change in calsequestrin mRNA expression has been detected in animal models of cardiac hypertrophy and in failing human heart.  相似文献   

19.
In skeletal muscle the dihydropyridine receptor is the voltage sensor for excitation-contraction coupling and an L-type Ca2+ channel. We cloned a dihydropyridine receptor (named Fgalpha1S) from frog skeletal muscle, where excitation-contraction coupling has been studied most extensively. Fgalpha1S contains 5600 base pairs coding for 1688 amino acids. It is highly homologous with, and of the same length as, the C-truncated form predominant in rabbit muscle. The primary sequence has every feature needed to be an L-type Ca2+ channel and a skeletal-type voltage sensor. Currents expressed in tsA201 cells had rapid activation (5-10 ms half-time) and Ca2+-dependent inactivation. Although functional expression of the full Fgalpha1S was difficult, the chimera consisting of Fgalpha1S domain I in the rabbit cardiac Ca channel had high expression and a rapidly activating current. The slow native activation is therefore not determined solely by the alpha1 subunit sequence. Its Ca2+-dependent inactivation strengthens the notion that in rabbit skeletal muscle this capability is inhibited by a C-terminal stretch (Adams, B., and Tanabe, T. (1997) J. Gen. Physiol. 110, 379-389). This molecule constitutes a new tool for studies of excitation-contraction coupling, gating, modulation, and gene expression.  相似文献   

20.
The regulation of intracellular free calcium ions (Ca2+) in skeletal muscle at rest and during contraction depends on mechanisms such as Na(+)-Ca2+ exchangers, Ca(2+)-ATPases, and the voltage-sensitive ryanodine receptor. The susceptibility of these regulatory mechanisms to free-radical-mediated damage may be increased because of their location within the lipid membranes of sarcolemma, sarcoplasmic reticulum, and mitochondrion with resultant uncontrolled increases in myoplasmic Ca2+ concentration and cell death. The potentially fatal pharmacogenetic disorder, malignant hyperthermia (MH), is characterised by muscle rigidity, arrhythmias, lactic acidosis, and a rapid rise in body temperature. The sequence of events responsible for the MH syndrome remains uncertain, but it has been variously ascribed to faults in many of the Ca2+ regulatory mechanisms. In swine the condition is associated with a specific mutation in the ryanodine receptor, whereas in humans the syndrome is genetically heterogenous. Free-radical-mediated peroxidation of membrane lipids and proteins also results in the rapid efflux of Ca2+ from organelles, and the detection of products of free radical reactions in tissue from MH-susceptible individuals using electron spin resonance spectroscopy provides evidence for the involvement of free radicals in the MH syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号