首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the effect of microwave curing on the bond strength of steel reinforcement in concrete repair. Pull-out tests on plain mild steel reinforcement bars embedded in four repair materials in 100 mm cube specimens were performed to determine the interfacial bond strength. The porosity and pore structure of the matrix at the steel interface, which influence the bond strength, were also determined. Test results show that microwave curing significantly reduces the bond strength of plain steel reinforcement. The reduction relative to normally cured (20 °C, 60% RH) specimens is between 21 and 40% with low density repair materials and about 10% for normal density cementitious mortars. The corresponding compressive strength of the matrix also recorded similar reduction and microwave curing resulted in increased porosity at the interface transition zone of the steel reinforcement. A unique relationship exists between bond strength and both compressive strength and porosity of all matrix materials. Microwave curing reduced shrinkage but despite the wide variation in the shrinkage of the repair mortars, its effect on the bond strength was small. The paper provides clear correlations between the three parameters (compressive strength, bond strength and porosity), which are common to both the microwave and conventionally cured mortars. Therefore, bond-compressive strength relationships used in the design of reinforced concrete structures will be also valid for microwave cured elements.  相似文献   

2.
Strengthening, maintenance and repair of concrete structures are becoming more recognised in the field of civil engineering. There is a wide range of repair mortars with varying properties, available in the market and promoted by the suppliers, which makes the selection of the most suitable one often difficult. A research programme was conducted at Leeds University to investigate the properties of cementitious, polymer and polymer modified (PMC) repair mortars. Following an earlier publication on the intrinsic properties of the materials, this paper presents results on the compatibility of these materials with concrete. The dimensional stability is used in this study to investigate the compatibility of the repair mortars and the parent concrete. Composite cylindrical specimens (half repair mortar/half concrete) were prepared and used for the measurements of modulus of elasticity and shrinkage. The results of the different combined systems were obtained and compared to those calculated using a composite model. The variations between the measured and calculated values were less than 10%. The paper attempts to quantify the effect of indirect differential shrinkage on the permeability and diffusion characteristics of the different combined systems.  相似文献   

3.
This study was conducted to evaluate the mechanical properties and durability characteristics of nine polymer- and cement-based repair mortars. Mechanical properties, such as compressive, tensile and flexural strength, elastic modulus, shrinkage and thermal expansion were studied. The durability characteristics of the repair materials were evaluated by measuring: (i) chloride permeability, (ii) electrical resistivity and (iii) carbonation depth. The mechanical properties of the selected repair mortars did not vary very significantly from each other. The elastic modulus of the polymer-based repair mortars was less than that of the cement-based repair mortars. This will lead to a reduced drying shrinkage cracking in the former repair mortars compared to the latter. The electrical resistivity of polymer-based repair mortars was more than that of cement-based repair mortars. Such a trend was not noted in the chloride permeability data. The chloride permeability in all the repair materials was very low according to ASTM C 1202 criteria. Enhanced carbonation was noted in some of the polymer-based repair mortars.  相似文献   

4.
The use of waste glass incorporated into construction materials has been the focus of several studies. Its utilization in cementitious matrices as a cement surrogate has been the most suitable application because of its potential pozzolanic properties. In this study, the influence of varying the amount of cement replaced by waste glass on several mechanical properties considered essential to ensuring the performance of mortars in structural repair, such as compressive strength, modulus of elasticity, linear shrinkage and tensile bond strength, was analyzed. Additionally, the influence of waste glass on water absorption by capillarity and the microstructure of these mortars were also assessed. The results indicate the potential use of this waste material for cement mortars. The 5% replacement rate showed the best results.  相似文献   

5.
The porosity and pore size distributions are pore structure parameters which have a direct effect on the permeability of cement paste as well as its durability. This paper is based on laboratory programs comparing the porosity, pore size distributions and water absorption with varying ageing processes of three commercial polymer-modified mortars (SBR, PAE and VAE) as well as unmodified conventional mortar mixes exposed to different curing conditions. It was found that an increase in polymer loading has resulted in a significant reduce in porosity and water absorption in polymer-modified mortars. Furthermore, the SBR3 mix exhibited the most superior properties of the study in all conditions at different ages of curing.  相似文献   

6.
Fibers are used for improving some properties of conventional concrete (which is a brittle material) such as tensile strength, abrasion resistance, absorption and crack control. This study investigates the usability of fibers against the harmful effects of freeze–thaw cycles on cement mortars. For this objective, five different types of fibers, i.e., Polypropylene (PP), Carbon (CF), Aramid (AR), Glass (GF) and Poly vinyl alcohol (PVA) in four different ratios (0.0%, 0.4%, 0.8% and 1.2%) were added to cement mortars along with an amount of air agent. These samples were then subjected to five different freeze–thaw cycles (0, 25, 50, 75 and 100). Thus, mechanical behaviors were investigated under freeze–thaw effects.The most important results of the study are summarized; the fibers increase flexural strength and deflection ability of the samples while decreasing compressive strength, dynamic modulus of elasticity and specific mass. The highest flexural strength was obtained with a 1.2% addition of CF fiber for the samples in normal conditions. The mechanical properties of the samples subjected to repetitive freeze–thaw cycles were also investigated; the best flexural strength was provided with 1.2% CF addition, while the highest dynamic modulus of elasticity was obtained with a 1.2% PP addition.  相似文献   

7.
This paper studies the physical properties, compressive strength and drying shrinkage of multi-blended cement under different curing methods. Fly ash, ground bottom ash and undensified silica fume were used to replace part of cement up to 50% by weight. Specimens were cured in air at ambient temperature, water at 25, 40 and 60 °C, sealed with plastic sheeting for 28 days. The results show that absorption and volume of permeable pore space (voids) of blended cement mortars at 28 day under all curing methods tend to increase with increasing silica fume replacement. The compressive strength of blended cement with fly ash and bottom ash was lower than that of Portland cement control at all curing condition while blended cement with silica fume shows higher compressive strength. In addition, the compressive strength of specimens cured with water increased with increasing curing temperature. The drying shrinkage of all blended cement mortar cured in air was lower than that of Portland cement control while the drying shrinkage of blended cement mortar containing silica fume, cured with plastic sealed and water at 25 °C was higher than Portland cement control due to pore refinement and high autogenous shrinkage. However, the drying shrinkage of blended cement mortar containing SF cured with water at 60 °C was lower than that of Portland cement control due to lower autogenous shrinkage and the reduced microporosity of C–S–H.  相似文献   

8.
This paper regards the axial behavior of reinforced concrete columns repaired by polymer-modified cementitious mortars. Tests were performed on eight columns with square cross-section: six were repaired with three types of polymer-modified cementitious mortars on all faces, two were in non-damaged and non-repaired condition (control elements). Tests were repeated varying mechanical properties (elastic modulus and compressive strength) of repair materials, maintaining the same repair thickness, including the reinforcement bars. Comparisons between repaired and control elements showed that polymer-modified cementitious mortars cannot restore the original load-bearing capacity of columns. In spite of this, selection of mortar mechanical properties plays a significant role. Among the three types of repair mortar tested in this experimental study, using the material with the most similar elastic modulus and higher compressive strength than that of the concrete substrate is recommended.  相似文献   

9.
This paper, which reports on part of a 3-year research project into wet-process sprayed mortars and concretes for repair, investigates the hardened performance of wet-process sprayed fine concretes. It follows on from an earlier paper by the authors on the performance of hardened wet-process sprayed mortars and some comparisons with these are made here (Austin SA, Robins PJ, Goodier CI (2000). Magz Concr Res 52:195–208). Work has also been completed by the authors on the pumping and rheology of the fine concrete mixes presented here (Austin SA, Goodier, CI, Robins PJ (2005). Mater Struc, RILEM 38:229–237). Nine laboratory-designed fine concretes were pumped and sprayed through a wet-process piston pump and one through a dry-process pump. The properties measured included compressive and flexural strength, tensile bond strength, hardened density, elastic modulus, sorptivity and drying and restrained shrinkage. In situ test specimens were extracted from 500 × 500 × 100 mm deep sprayed panels. Hardened property tests were also conducted on corresponding cast specimens and, where possible, on specimens that had been sprayed directly into a cube or beam mould. The compressive strengths of the cast cubes, although very similar, were usually slightly greater than the in␣situ cubes, the opposite of what was found for wet-sprayed mortars (Austin SA, Robins PJ, Goodier CI (2000). Magz Concr Res 52:195–208). Inconsistent results for compressive and flexural strengths obtained from spraying directly into a steel mould suggest that this method is not as reliable when using a piston pump as it is when using a low-output worm pump (Austin SA, Robins PJ, Goodier CI (2000). Magz Concr Res 52:195–208). The bond strength of all the mixes exceeded 2.1 MPa at 7 days. The values for modulus of elasticity, when compared with the compressive strength, were similar to published data for this relationship. The sorptivity values showed only a slight relationship with the compressive strength. The mixes exhibited a wide range of drying shrinkage, but the data from the restrained specimens suggest an actual repair is influenced as much by ambient conditions as it is by the mix proportions.  相似文献   

10.
The transport of fluid and ions in concrete mixtures is central to many aspects of concrete deterioration. As a result, transport properties are frequently measured as an indication of the durability that a concrete mixture may be expected to have. This paper is the second in a series investigating the performance of high volume fly ash (HVFA) mixtures with low water-to-cementitious ratios (w/cm) that are internally cured. While the first paper focused on strength and shrinkage, this paper presents the evaluation of the transport properties of these mixtures. Specifically, the paper presents results from: rapid chloride migration (RCM), rapid chloride penetration test (RCPT), apparent chloride diffusion coefficient, surface electrical resistivity, and water absorption. The test matrix consisted of mortar samples with two levels of class C fly ash replacement (40% and 60% by volume) with and without internal curing provided with pre-wetted lightweight fine aggregates (LWA). These mixtures are compared to plain ordinary portland cement (OPC) mortars. The results indicate that HVFA mixtures with and without internal curing provide benefits in terms of reduced transport coefficients compared to the OPC mixtures.  相似文献   

11.
In this work, drying shrinkage of four alkali-activated slag (AAS) mortars, prepared using various types/dosages of activator, was characterized at four different levels of relative humidity (RH) and two drying regimes (i.e. direct and step-wise drying). The results show that drying shrinkage values of AAS are significantly dependent on the drying rate, as AAS shrinks more when the RH is decreased gradually, instead of directly. At high RH, the drying shrinkage of AAS exhibits a considerable visco-elastic/visco-plastic behavior, in comparison to ordinary portland cement (OPC). It is concluded that the cause of high-magnitude shrinkage in AAS mortar is due to the high visco-elastic/visco-plastic compliance (low creep modulus) of its solid skeleton. Furthermore, the activator affects the shrinkage behaviors of AAS by influencing the pore structure and mechanical properties.  相似文献   

12.
Cement-soil mortars are commonly used for the construction of soil-cement block masonry. The paper focuses on an experimental study in understanding the various characteristics of cement soil mortars in fresh and hardened state. Workability, strength, water retentivity, shrinkage and stress-strain characteristics of cement soil mortars and bond strength of soil-cement block couplets using such mortars are examined. Characteristics of 1:6 cement mortar and 1:1:6 cement lime mortar are also examined for the purposes of comparison. Workability of mortars has been quantified by conducting flow table tests. Results of flow values obtained for mortars from various construction sites are reported. There is a linear relationship between flow and water cement ratio of the mortars. Flow increases with increase in water-cement ratio. Very high flow value of 130% can be achieved for cement soil mortars and cement lime mortars. Reduction in flow value from 100% to 80% leads to increase in strength and modulus of mortars. Clay fraction of the mortar mix controls the flow, strength, density, shrinkage value and modulus of cement soil mortars. Cement-soil mortars lead to better tensile bond strength for soilcement block couplets when compared to the cement mortar and cement lime mortar.  相似文献   

13.
This paper presents an experimental study on the restrained shrinkage cracking of the lightweight concretes made with cold-bonded fly ash lightweight aggregates. Two types of fly ash having different physical and chemical properties were utilized in the production of lightweight aggregates with different strengths. Afterwards, lower strength aggregates were also surface treated by water glass and cement–silica fume slurry to improve physical and mechanical properties of the particles. Therefore, a total of eight concrete mixtures were designed and cast at 0.35 and 0.55 water–cement ratios using four types of lightweight coarse aggregates differing in their surface texture, density, water absorption, and strength. Ring type specimens were used for restrained shrinkage cracking test. Free shrinkage, creep, weight loss, compressive and splitting tensile strengths, and modulus of elasticity of the concretes were also investigated. Results indicated that improvement in the lightweight aggregate properties extended the cracking time of the concretes resulting in finer cracks associated with the lower free shrinkage. Moreover, there was a marked increase in the compressive and splitting tensile strengths, and the modulus of elasticity.  相似文献   

14.
In this work nano-titania of anatase and routile form has been added in mortars containing: (a) binders of either hydrated lime and metakaolin, or natural hydraulic lime and, (b) fine aggregates of carbonate nature. Mortar composition was tailored to ensure adhesion of fragments of porous limestones from the Acropolis monuments. The aim was to study the effect of nano-titania in the hydration and carbonation of the above binders, as well as the mechanical properties and the adhesive capability of the designed mortars, where the nano-titania proportion was 4.5–6% w/w of binder. The physico-chemical and mechanical properties of the nano-titania mortars were studied and compared to the respective ones, without the nano-titania addition. DTA-TG, FTIR, SEM and XRD analyses indicated the evolution of carbonation, hydration and hydraulic compound formation during a 1 year curing. Results indicate enhanced carbonation, hydration and modulus of elasticity of mortar mixtures with nano-titania. A specifically designed experimental procedure for measuring the direct tensile strength of the mortar–stone system proved that nano-titania mortars can be used as adhesive materials for porous limestones.  相似文献   

15.
针对大掺量粉煤灰、矿渣粉导致干混砂浆早期强度和后期强度较低的问题,研究脱硫石膏对该干混砂浆性能的影响;采用X射线衍射、扫描电镜及孔结构分析等手段进行微观机理讨论。结果表明,在大掺量粉煤灰矿粉干混砂浆中掺加占胶凝材料总质量6%~8%的脱硫石膏,对和易性无不良影响,并可显著提高浆体的抗压强度及拉伸粘结强度,收缩率降低10%以上,并改善抗碳化能力,使砂浆体积更稳定;脱硫石膏对粉煤灰及矿渣粉起到激发硫酸盐和碱性的双重作用,并在一定程度上促进水泥水化;胶凝材料的水化产物改善砂浆浆体内部结构,使砂浆浆体中的孔隙大大减少。  相似文献   

16.
Aerated concrete is relatively homogeneous when compared to normal concrete, as it does not contain coarse aggregate phase, yet shows vast variation in its properties. The properties of aerated concrete depend on its microstructure (void–paste system) and composition, which are influenced by the type of binder used, methods of pore-formation and curing. Although aerated concrete was initially envisaged as a good insulation material, there has been renewed interest in its structural characteristics in view of its lighter weight, savings in material and potential for large scale utilisation of wastes like pulverised fuel ash. The focus of this paper is to classify the investigations on the properties of aerated concrete in terms of physical (microstructure, density), chemical, mechanical (compressive and tensile strengths, modulus of elasticity, drying shrinkage) and functional (thermal insulation, moisture transport, durability, fire resistance and acoustic insulation) characteristics.  相似文献   

17.
During the first few hours after mixing, the properties of concrete change between different types of material behaviour. Fresh concrete is during mixing a Bingham material, gradually attaining solid body properties with considerable compressive strength and stiffness. The development of mechanical properties can be described by the degree of hydration. For the prediction of mechanical properties of early-age concrete as well as for the prediction of stresses caused by differences of temperature and autogenous shrinkage, it is essential to know the initial degree of hydration, from which on the development of strength and stiffness can be assumes to begin. This paper deals with the determination of the end of the dormant phase by using ultrasonic pulse velocity techniques. Using compression wave and shear wave transducers the hardening of concrete is observed under adiabatic curing conditions. From the development of dynamic Young’s modulus and Poisson’s ratio a model of the initial degree of hydration is derived to improve existing models of the development of tensile strength and modulus of elasticity for very early-age concrete. A procedure to determinate an upper and lower bound for the end of setting time is presented. Typical results are presented for different concrete compositions, especially for high strength concrete.  相似文献   

18.
This paper studies the effect of silicate content on the mechanical and durability-related properties of metakaolin (MK) and metakaolin/blastfurnace slag (BFS) alkaline activated mortars. A reference mortar based on the alkaline activated MK was compared to 60/40 MK/BFS mortars containing different SiO2/Na2O molar ratios in the activator. The properties assessed were compressive strength, porosity (water saturation), porosity and pore size distribution by Mercury Intrusion Porosimetry (MIP) and water capillary sorption. The microstructure was assessed using SEM and x-ray computerized micro-tomography (μ-CT). Results show that the addition of BFS significantly alters the microstructure of alkali-activated mortars, promoting a reduction of porosity and capillary sorption. In addition, an optimum SiO2/Na2O molar ratio in the activator is required to produce better durability mortars, which however do not necessarily present the highest mechanical strength.  相似文献   

19.
This paper reports the results of an experimental investigation into the action of styrene-butadiene (SB) polymer on the mechanical properties of polymer cement mortars (PCM), comparing the results with the requirements specified in EN 1504-3 [Products and systems for the protection and repair of concrete structures—definitions, requirements, quality control and evaluation of conformity—part 3: structural and non-structural repair, CEN, 2005]. Setting times, shrinkage, elasticity modulus and the microstructure building in PCM are also characterised. Tests performed on PCM confirmed the beneficial action of polymers on tensile strength and, in particular, on flexural strength of cement mortars, whereas in compressive strength, a reduction, at earlier ages, was observed. It is considered that this mechanical behaviour results from the polymer action on the atrophy of hydrated Ca(OH)2 crystals and on the reduction in the density of microcracks in the paste–aggregate interface, which leads to the noticeable improvement in flexural and tensile strengths. On the other hand, the smaller contribution of the beneficial action of the polymer on the compressive strength, together with the delay in cement hydration and with the increase in the closed porosity of PCM, are the main causes for the reduction in the compressive strength during the first months.
Fernando António Baptista BrancoEmail:
  相似文献   

20.
This paper reports the results of an investigation of the pore size distribution of mortar that contains varying amounts of ground brick from different European brick types. Clay brick deriving from four European countries was ground to roughly cement fineness and used to partially replace cement in quantities of 0%, 10%, 20% and 30% in standard mortars. The pore volume, pore size distribution, threshold radius and strength of these mortars were tested for curing periods of up to one year. The presence of ground brick (GB) alters significantly the compressive strength of mortar and this is attributed to both the dilution effect and production of additional C–S–H gel from reaction of GB with CH. The additional C–S–H gel refines the pore size distribution of the mortar and this is reflected in compressive strength values obtained for these mixes. A critical relationship between threshold radius and compressive strength is also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号