首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Highly permeable macroporous implants of various architectures for bone grafting have been fabricated by thermal extrusion 3D printing using highly filled β-Ca3(PO4)2/poly(D,L-lactide) (degree of filling up to 70 wt %) and β-Ca3(PO4)2/poly(ε-caprolactone) (degree of filling up to 70 wt %) composite filaments. To modify the surface of the composite macroporous implants with the aim of improving their wettability by saline solutions, we have proposed exposing them to a cathode discharge plasma (2.5 W, air as plasma gas) in combination with subsequent etching in a 0.5 M citric acid solution. It has been shown that the main contribution to changes in the wettability (contact angle) of the composites is made by the changes produced in their surface morphology by etching in a low-temperature plasma and citric acid. An alternative approach to surface modification of the composites is to produce a carbonate hydroxyapatite layer via precipitation from a simulated body fluid solution a factor of 5 supersaturated relative to its natural analog (5xSBF).  相似文献   

2.
The crystal structure of a previously unknown Np(V) sesquioxalate, Na4(NpO2)2(C2O4)3·2H2O was studied. The crystal structure consists of neptunyl(V) cations, sodium cations, oxalate anions, and water molecules of crystallization. Neptunyl(V) cations and oxalate ions form anionic chains [(NpO2)2(C2O4)3] n 4n? . The coordination polyhedron (CP) of Np (pentagonal bipyramid) contains two apical “yl” oxygen atoms and five equatorial O atoms of three oxalate ions. The CP of Na(1) and Na(2) cations are combined through the common edges into zigzag chains in the [010] direction. Two independent oxalate ions are tridentate and tetradentate ligands.  相似文献   

3.
The effect of microwave radiation (MWR) on the decomposition of UO2(NO3)2·6H2O was studied. Determination of [UO 2 2+ ] and [NO 3 ? ], and also of the molar ratio NO 3 ? : UO 2 2+ in various fractions of the decomposition product showed that the mechanism of the UO2(NO3)2·6H2O decomposition under the action of MWR differs from the mechanism of its decomposition under common convection heating. The main precursor of UO3 as product of UO2(NO3)2·6H2O decomposition under the action of MWR is uranyl hydroxonitrate UO2(OH)NO3 formed already in the first minutes of the irradiation. In contrast to the thermolysis under convection heating, UO2(NO3)2 or its hydrates were not detected as intermediates. The mechanism of the UO2(NO3)2·6H2O decomposition under the action of MWR can be presented by the reactions UO2(NO3)2·6H2O → UO2(OH)NO3 + 5H2O + HNO3 and UO2(OH)NO3 → UO3 + HNO3. The solubility of UO2(OH)NO3 in H2O at 20°C was estimated experimentally at 6.83 × 10?2 M.  相似文献   

4.
In this paper, the effects of Li2O–B2O3–Bi2O3–SiO2 (LBBS) glass on the phase formation, sintering characteristic, the microstructure and microwave dielectric properties of temperature-stable (Mg0.95Co0.05)2TiO4–Li2TiO3 ceramics were investigated. (Mg0.95Co0.05)2TiO4–Li2TiO3 powders were obtained by using the traditional solid-state process. A small amount of LBBS doping can effectively reduce sintering temperature and promote the densification of the ceramics. X-ray diffraction analysis revealed not only the primary phase (Mg·Co)2TiO4 associated with Li2TiO3 minor phase but also a third phase (Mg·Co)TiO3. The dielectric constant and Qf values vary with the doping amount of LBBS and sintering temperatures. With the compensation of the positive temperature coefficient (τ f ) of Li2TiO3 and the negative τ f of (Mg0.95Co0.05)2TiO4, the τ f of the specimens fluctuates around zero. The (Mg0.95Co0.05)2TiO4 ceramic with 2.5 wt% LBBS addition and sintering at 900?°C for 4 h exhibited excellent microwave dielectric properties: ? r ?=?19.076, Qf?=?126100 GHz, and τ f ?=?0.98 ppm/°C.  相似文献   

5.
Products of UO2(NO3)2·6H2O decomposition under the action of microwave radiation (MWR) were studied by thermal gravimetric analysis, X-ray phase analysis, IR spectroscopy, and electron microscopy. The results of physicochemical studies of these decomposition products were compared to the published data for various uranium compounds, including UO2(NO3)2·6H2O. Apart from gaseous products, the final products of decomposition of 2–10 g of UO2(NO3)2·6H2O under the action of MWR for 35 min (the maximal process temperature, 170–320°C, is attained in the first 2–5 min of irradiation) are uranyl hydroxonitrate UO2(OH)NO3 and uranium trioxide UO3 or their hydrates. The results obtained are consistent with the mechanism suggested in our previous paper and involving the reactions (1) UO2(NO3)2·6H2O → UO2(OH)NO3 + 5H2O + HNO3 and (2) UO2(OH)NO3 → UO3 + HNO3. The physicochemical study confirms the conclusions on the composition of products of UO2(NO3)2·6H2O decomposition under the action of MWR, made previously on the basis of chemical studies. The only precursor of UO3 in microwave treatment of UO2(NO3)2·6H2O is UO2(OH)NO3 (or its hydrates). This is the main difference between the courses of uranyl nitrate decomposition under the conditions of microwave and convection heating. In the latter case, uranyl nitrate and its hydrates also participate in the formation of UO3.  相似文献   

6.
Lanthanum magnesium double nitrate (LMN) crystals can be used as material for adiabatic demagnetization, magnetic thermometers and a proton spin-polarized target in both physics and polarized neutron diffraction. In the past years, the double nitrates doped with transition metal or rare earth ions have been studied by experimental and theoretical methods. For instance, the electronic paramagnetic resonance (EPR) g factors of the Ce3+ ions in La2Mg3(NO3)12⋅24H2O crystal were measured decades ago. But until now, these useful experimental results have not been theoretically explained. In this work, The EPR g factors of the trigonal Ce3+ centers in La2Mg3(NO3)12⋅24H2O are theoretically studied from the perturbation formulae of the EPR parameters for a 4f1 ion under the trigonal symmetry crystal field. The used crystal parameters are obtained from the superposition model and the local structure of the studied crystal. The calculated results are reasonably constant to the observed values. The results are discussed.  相似文献   

7.
We have studied phase relations in the K2MoO4–Ln2(MoO4)3–Zr(MoO4)2 (Ln = La–Lu, Y) systems by the method of “intersecting cuts,” identified pseudobinary joins in their composition triangles, and constructed their phase compatibility diagrams. The systems have been shown to contain new ternary molybdates with the general formula K5LnZr(MoO4)6 (Ln = Dy–Lu and Y). The thermal characteristics of the synthesized compounds have been studied by differential scanning calorimetry in the temperature range 25–700°C. The new ternary molybdates crystallize in a trigonal structure (sp. gr. R\(\bar 3\)c, Z = 6).  相似文献   

8.
xSr0.7Ce0.2TiO3–(1???x)Sr(Mg1/3Nb2/3)O3 ceramics, referred to xSCT–(1???x)SMN, were successfully produced by conventional solid-state sintered technology. The compounds, belonging to perovskites with a secondary phase of CeO2, can be detected even with x down to 0.1 of SCT composition. The overall trend for grain growth illustrates the increase with increasing SCT doping level. The Raman peak at 825 cm?1 splits into two peaks and causes red shift phenomenon. XPS spectra indicate that Ti and Nb ions exist respectively in tetravalence and pentavalence, and Ce ions exist in trivalence and tetravalence. Dielectrics constant (ε r ) of SCT–SMN ceramics gradually increases with increasing theoretical dielectric polarizabilities. A wider width of the 825 cm?1 for FWHM of A1g mode Raman peaks suggests to a lower Q?×?f value. The increasing tolerance factor in agreement with temperature coefficient of resonant frequency (τ f ), denotes that the rise of perovskite symmetry. The 0.1SCT–0.9SMN ceramic sintered at 1450?°C for 4 h illustrates excellent microwave dielectric properties with ε r ?~?35.4, Q?×?f?~?11282 GHz and τ f ?~?1.7 ppm/°C. Activation energies of 0.1SCT–0.9SMN ceramic at 100, 300 and 500 V, are ~0.436, 0.427 and 0.331 eV, respectively, indicative of a decreased trend with external electric field.  相似文献   

9.
Bi(Mg0.5Ti0.5)O3–PbTiO3 (BMT–PT) ceramics, with BMT–PT ratios ranging from 70-30 to 50-50, were prepared by a conventional solid state reaction process. The 50-50 BMT–PT ceramic possessed a tetragonal perovskite structure with a c/a ratio of ~1.037. Increasing BMT content led to a reduction of tetragonality and a change of structure to a rhombohedral or pseudo-cubic phase. Dielectric measurements, carried out during heating, indicated the occurrence of two phase transformations, which were identified as relaxor ferroelectric to antiferroelectric (at a temperature in the range from 150–300 °C) and antiferroelectric to paraelectric (at a temperature around 500 °C). The antiferroelectric nature of the 60-40 and 70-30 BMT–PT ceramics in the intermediate temperature range was confirmed by polarisation-electric field hysteresis measurements.  相似文献   

10.
Single crystals of [UO2(OOC)2CH2(H2O)]·2H2O (I) were prepared by recrystallization of finely crystalline uranyl malonate trihydrate under hydrothermal conditions. The crystal structure of I consists of electroneutral [UO2(OOC)2CH2(H2O)]n layers and water molecules located between them. The uranium coordination number is 7. The uranium coordination polyhedron is a distorted pentagonal bipyramid with the oxygen atoms of the uranyl group in the apices. The equatorial plane is occupied by four O atoms of three malonate ligands and the water molecule. The malonate anion is coordinated in the bidentate fashion to one uranyl ion to form a six-membered ring and in the monodentate fashion to two other uranyl ions.  相似文献   

11.
Glasses from the CaO–TiO2–P2O5 system have potential use in biomedical applications. Here a method for the sol–gel synthesis of the ternary glass (CaO)0.25(TiO2)0.25(P2O5)0.5 has been developed. The structures of the dried gel and heat-treated glass were studied using high-energy X-ray diffraction. The structure of the binary (TiO2)0.5(P2O5)0.5 sol–gel was studied for comparison. The results reveal that the heat-treated (CaO)0.25(TiO2)0.25(P2O5)0.5 glass has a structure based on chains and rings of PO4 tetrahedra, held together by a combination of electrostatic interaction with Ca2+ ions and by corner-sharing oxygen atoms with TiO6 octahedra. In contrast, the (TiO2)0.5(P2O5)0.5 glass has a structure based on isolated P2O7 units linked together by corner-sharing with TiO6 groups. The results suggest that both the dried gels possess open porous structures. For the (CaO)0.25(TiO2)0.25(P2O5)0.5 sample there is a significant increase in Ca–O coordination number with heat treatment.  相似文献   

12.
We have studied the effect of Bi(Mg0.5Ti0.5)O3 additions on the phase formation, structural parameters, microstructure, and dielectric properties of solid solutions in the region of a morphotropic phase boundary in the BiFeO3–BaTiO3 system. Single-phase samples with the perovskite structure have been obtained and the addition of Bi(Mg0.5Ti0.5)O3 has been shown to raise the Curie temperature of the ceramics and improve their dielectric properties.  相似文献   

13.
The thermal behavior of (TeO2) n (MoO3)1–n (n = 0.75, 0.85, 0.90) tellurite glasses has been studied by differential scanning calorimetry in the range from T = 300 to T = 850 K and heat capacity has been measured in the temperature range. The thermodynamic characteristics of the devitrification process and glassy state have been determined. The experimental data obtained have been used to evaluate the standard thermodynamic functions of the system in glassy and supercooled liquid states: heat capacity C p °(T), enthalpy H°(T)–H°(320), entropy S°(T)–S°(320), and Gibbs function G°(T)–G°(320) in the temperature range 320–630 K. The composition dependences of the glass transition temperature and thermodynamic functions for the glasses have been obtained. The thermal and thermodynamic properties of the tellurite glasses have been compared to those of previously studied (TeO2) n (WO3)1–n and (TeO2) n (ZnO)1–n glasses.  相似文献   

14.
The structure of a double neptunium(V) lanthanum nitrate, La(NpO2)3(NO3)6·nH2O, was studied by single crystal X-ray diffraction. Each neptunyl(V) ion in the structure of the compound is bonded to four other neptunyl(V) ions, acting simultaneously as a bidentate ligand and as a coordination center for two other dioxocations. The cation-cation interaction of the neptunyl(V) ions results in formation of trigonal-hexagonal cationic networks. The surrounding of each Np atom also includes two bidentate nitrate ions. The CN of the Np atom is 8, and the coordination polyhedron is a distorted hexagonal bipyramid. The La3+ cations are surrounded only by water molecules.  相似文献   

15.
In this paper, (1 ? x)(K0.5Na0.5)NbO3xBi(Mg0.75W0.25)O3 (x = 0–0.015) lead-free dielectric ceramics were investigated. XRD analysis certified that the Bi(Mg0.75W0.25)O3 has diffused into (K0.5Na0.5)NbO3 to fabricate a new solid solution. The addition of Bi(Mg0.75W0.25)O3 depressed the orthorhombic–tetragonal phase transition temperature from 210 to 176 °C and tetragonal–pseudocubic phase transition temperature (Curie point) from 419 to 400 °C. As x = 0.005, the ceramics exhibited high relative permittivity (ε ~ 1325), low dielectric loss (tan δ < 2.9%) tan δ stability (Δε/ε168°C ≤ ±15%) in the temperature range of 168 ~ 369 °C. Especially, the ceramics also showed optimized piezoelectric constant (d 33 = 122 pC N?1) and remnant polarization (Pr = 32.57 μC cm–2). These results indicated that the BMW added ceramics have potential applications in ferroelectric and thermal stability devices.  相似文献   

16.
We have studied in detail the gamma radiation induced changes in the electrical properties of the (TeO2)0·9 (In2O3)0·1 thin films of different thicknesses, prepared by thermal evaporation in vacuum. The current–voltage characteristics for the as-deposited and exposed thin films were analysed to obtain current versus dose plots at different applied voltages. These plots clearly show that the current increases quite linearly with the radiation dose over a wide range and that the range of doses is higher for the thicker films. Beyond certain dose (a quantity dependent on the film thickness), however, the current has been observed to decrease. In order to understand the dose dependence of the current, we analysed the optical absorption spectra for the as-deposited and exposed thin films to obtain the dose dependences of the optical bandgap and energy width of band tails of the localized states. The increase of the current with the gamma radiation dose may be attributed partly to the healing effect and partly to the lowering of the optical bandgap. Attempts are on to understand the decrease in the current at higher doses. Employing dose dependence of the current, some real-time gamma radiation dosimeters have been prepared, which have been found to possess sensitivity in the range 5–55 μGy/μA/cm2. These values are far superior to any presently available real-time gamma radiation dosimeter.  相似文献   

17.
0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 (PMNT) ceramics were fabricated by using their powders synthesized through a sol–gel process. Excess Pb(CH3COO)2·3H2O (0, 2, 5, 10 or 15 mol%) was added to the starting materials to study the effect of excess Pb on the microstructures, ferroelectric and dielectric properties of the PMNT ceramics. All the X-ray diffraction peaks can be indexed using perovskite-type PMNT for the ceramics prepared with excess Pb, while the PMNT ceramics with no excess Pb contain a little pyrochlore phase. The PMNT ceramics prepared with 2 mol% excess Pb are dense and uniform and composed of grains ranging from 3 to 7 μm. They exhibit the largest remnant polarization (P r = 32.1 μC/cm2) and the highest peak dielectric constant (ε max = 12,725). When more than 2 mol% excess Pb added, the electrical properties of the PMNT ceramics decreased with increasing excess Pb. Too much excess Pb (over 10 mol%) resulted in abnormal grain growth (>20 μm), large pores and residual PbO in amorphous state in PMNT ceramics, and they impaired the ferroelectric and dielectric properties of PMNT ceramics greatly.  相似文献   

18.
(Ca2Mg3)(X1.75Sb0.25)TiO12 [X = Nb and Ta] ceramics are prepared through the conventional solid-state route. The samples are calcined at 1,100 and 1,180 °C, and are sintered at 1,250 and 1,375 °C. The substitution of Sb decreases the calcination and sintering temperatures of pure (Ca2Mg3)(Nb/Ta)2TiO12. The structure of the samples is analyzed using X-ray diffraction method. The microstructure of the sintered pellet is studied using scanning electron microscopy. The dielectric properties such as dielectric constant (εr), quality factor (Quxf) and temperature coefficient of resonant frequency (τf) are measured in the microwave frequency region. By Sb substitution, thermal stability is achieved, with the increase in dielectric constant, without much change in the quality factor. The materials have intense emission lines in the wavelength region 500–700 nm. The compositions have good microwave dielectric properties and photoluminescence and hence are suitable for dielectric resonator and ceramic laser applications.  相似文献   

19.
(Zn1−xMgx)TiO3 (x = 0.1–0.5) solid solutions were synthesized by solid-state reaction using ZnO, (MgCO3)4·Mg(OH)2·5H2O and TiO2 as raw materials. The influences of Zn: Mg ratio and calcining temperature on the properties of (Zn1−xMgx)TiO3 were studied. By adding CaTiO3 into (Zn1−xMgx)TiO3, the microwave properties and sintering behavior were improved. The ceramics could be sintered at 1150 °C, and the ceramics with excellent microwave properties of τf ≈ ±10 ppm/°C, ε ≈ 24, Q × f > 45000 GHz (8 GHz) were obtained.  相似文献   

20.
The previously unknown Np(VII) compound Li[C(NH2)3]2[NpO4(OH)2]·6H2O (I), containing organic cations, was synthesized and studied by single crystal X-ray diffraction. In contrast to the relatively numerous structurally characterized salts of [NpO4(OH)2]3– anions with Na+, K+, Rb+, and Cs+ cations, which were prepared only from strongly alkaline media, crystals of I were isolated from solutions with a very low concentration of OH ions (about 0.1 M). The compound is relatively stable in storage in the dry form, but is strongly hygroscopic. In the structure of I, there are two independent Np(VII) atoms with the oxygen surrounding in the form of tetragonal bipyramids. In contrast to the other salts of the [NpO4(OH)2]3– anions with singlecharged alkali metal cations, the C(NH2) 3 + ions and hydrated Li+ ions in I interact with the oxygen surrounding of Np(VII) only via hydrogen bonds of types Ow–H···O and N–H···O with the formation of a three-dimensional H-bond network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号