首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The minimum k-terminal cut problem is of considerable theoretical interest and arises in several applied areas such as parallel and distributed computing, VLSI circuit design, and networking. In this paper we present two new approximation and exact algorithms for this problem on an n-vertex undirected weighted planar graph G. For the case when the k terminals are covered by the boundaries of m > 1 faces of G, we give a min{O(n 2 log n logm), O(m 2 n 1.5 log2 n + k n)} time algorithm with a (2–2/k)-approximation ratio (clearly, m \le k). For the case when all k terminals are covered by the boundary of one face of G, we give an O(n k3 + (n log n)k 2) time exact algorithm, or a linear time exact algorithm if k = 3, for computing an optimal k-terminal cut. Our algorithms are based on interesting observations and improve the previous algorithms when they are applied to planar graphs. To our best knowledge, no previous approximation algorithms specifically for solving the k-terminal cut problem on planar graphs were known before. The (2–2/k)-approximation algorithm of Dahlhaus et al. (for general graphs) takes O(k n 2 log n) time when applied to planar graphs. Our approximation algorithm for planar graphs runs faster than that of Dahlhaus et al. by at least an O(k/logm) factor (m \le k).  相似文献   

2.
This paper studies vehicle routing problems on asymmetric metrics. Our starting point is the directed k-TSP problem: given an asymmetric metric (V,d), a root rV and a target k≤|V|, compute the minimum length tour that contains r and at least k other vertices. We present a polynomial time O(\fraclog2 nloglogn·logk)O(\frac{\log^{2} n}{\log\log n}\cdot\log k)-approximation algorithm for this problem. We use this algorithm for directed k-TSP to obtain an O(\fraclog2 nloglogn)O(\frac{\log^{2} n}{\log\log n})-approximation algorithm for the directed orienteering problem. This answers positively, the question of poly-logarithmic approximability of directed orienteering, an open problem from Blum et al. (SIAM J. Comput. 37(2):653–670, 2007). The previously best known results were quasi-polynomial time algorithms with approximation guarantees of O(log 2 k) for directed k-TSP, and O(log n) for directed orienteering (Chekuri and Pal in IEEE Symposium on Foundations in Computer Science, pp. 245–253, 2005). Using the algorithm for directed orienteering within the framework of Blum et al. (SIAM J. Comput. 37(2):653–670, 2007) and Bansal et al. (ACM Symposium on Theory of Computing, pp. 166–174, 2004), we also obtain poly-logarithmic approximation algorithms for the directed versions of discounted-reward TSP and vehicle routing problem with time-windows.  相似文献   

3.
We present a general framework for designing fast subexponential exact and parameterized algorithms on planar graphs. Our approach is based on geometric properties of planar branch decompositions obtained by Seymour and Thomas, combined with refined techniques of dynamic programming on planar graphs based on properties of non-crossing partitions. To exemplify our approach we show how to obtain an  $O(2^{6.903\sqrt{n}})We present a general framework for designing fast subexponential exact and parameterized algorithms on planar graphs. Our approach is based on geometric properties of planar branch decompositions obtained by Seymour and Thomas, combined with refined techniques of dynamic programming on planar graphs based on properties of non-crossing partitions. To exemplify our approach we show how to obtain an  O(26.903?n)O(2^{6.903\sqrt{n}}) time algorithm solving weighted Hamiltonian Cycle on an n-vertex planar graph. Similar technique solves Planar Graph Travelling Salesman Problem with n cities in time O(29.8594?n)O(2^{9.8594\sqrt{n}}) . Our approach can be used to design parameterized algorithms as well. For example, we give an algorithm that for a given k decides if a planar graph on n vertices has a cycle of length at least k in time O(213.6?kn+n3)O(2^{13.6\sqrt{k}}n+n^{3}) .  相似文献   

4.
Xin He 《Algorithmica》1990,5(1):545-559
We present an efficient algorithm for 4-coloring perfect planar graphs. The best previously known algorithm for this problem takesO(n 3/2) sequential time, orO(log4 n) parallel time withO(n3) processors. The sequential implementation of our algorithm takesO(n logn) time. The parallel implementation of our algorithm takesO(log3 n) time withO(n) processors on a PRAM.  相似文献   

5.
A positive integern is a perfect power if there exist integersx andk, both at least 2, such thatn=x k . The usual algorithm to recognize perfect powers computes approximatekth roots forklog 2 n, and runs in time O(log3 n log log logn).First we improve this worst-case running time toO(log3 n) by using a modified Newton's method to compute approximatekth roots. Parallelizing this gives anNC 2 algorithm.Second, we present a sieve algorithm that avoidskth-root computations by seeing if the inputn is a perfectkth power modulo small primes. Ifn is chosen uniformly from a large enough interval, the average running time isO(log2 n).Third, we incorporate trial division to give a sieve algorithm with an average running time ofO(log2 n/log2 logn) and a median running time ofO(logn).The two sieve algorithms use a precomputed table of small primes. We give a heuristic argument and computational evidence that the largest prime needed in this table is (logn)1+O(1); assuming the Extended Riemann Hypothesis, primes up to (logn)2+O(1) suffice. The table can be computed in time roughly proportional to the largest prime it contains.We also present computational results indicating that our sieve algorithms perform extremely well in practice.This work forms part of the second author's Ph.D. thesis at the University of Wisconsin-Madison, 1991. This research was sponsored by NSF Grants CCR-8552596 and CCR-8504485.  相似文献   

6.
He  Xin 《Algorithmica》1990,5(1-4):545-559

We present an efficient algorithm for 4-coloring perfect planar graphs. The best previously known algorithm for this problem takesO(n 3/2) sequential time, orO(log4 n) parallel time withO(n3) processors. The sequential implementation of our algorithm takesO(n logn) time. The parallel implementation of our algorithm takesO(log3 n) time withO(n) processors on a PRAM.

  相似文献   

7.
In the exact matching problem we are given a graph G, some of whose edges are colored red, and a positive integer k. The goal is to determine if G has a perfect matching, exactly k edges of which are red. More generally if the matching number of G is m=m(G), the goal is to find a matching with m edges, exactly k edges of which are red, or determine that no such matching exists. This problem is one of the few remaining problems that have efficient randomized algorithms (in fact, this problem is in RNC), but for which no polynomial time deterministic algorithm is known. Our first result shows that, in a sense, this problem is as close to being in P as one can get. We give a polynomial time deterministic algorithm that either correctly decides that no maximum matching has exactly k red edges, or exhibits a matching with m(G)?1 edges having exactly k red edges. Hence, the additive error is one. We also present an efficient algorithm for the exact matching problem in families of graphs for which this problem is known to be tractable. We show how to count the number of exact perfect matchings in K 3,3-minor free graphs (these include all planar graphs as well as many others) in O(n 3.19) worst case time. Our algorithm can also count the number of perfect matchings in K 3,3-minor free graphs in O(n 2.19) time.  相似文献   

8.
Power optimization is a central issue in wireless network design. Given a graph with costs on the edges, the power of a node is the maximum cost of an edge incident to it, and the power of a graph is the sum of the powers of its nodes. Motivated by applications in wireless networks, we consider several fundamental undirected network design problems under the power minimization criteria. Given a graph G=(V,E)\mathcal{G}=(V,\mathcal{E}) with edge costs {c(e):e∈ℰ} and degree requirements {r(v):vV}, the Minimum-Power Edge-Multi-Cover\textsf{Minimum-Power Edge-Multi-Cover} (MPEMC\textsf{MPEMC} ) problem is to find a minimum-power subgraph G of G\mathcal{G} so that the degree of every node v in G is at least r(v). We give an O(log n)-approximation algorithms for MPEMC\textsf{MPEMC} , improving the previous ratio O(log 4 n). This is used to derive an O(log n+α)-approximation algorithm for the undirected $\textsf{Minimum-Power $\textsf{Minimum-Power ($\textsf{MP$\textsf{MP ) problem, where α is the best known ratio for the min-cost variant of the problem. Currently, _boxclosen-k)\alpha=O(\log k\cdot \log\frac{n}{n-k}) which is O(log k) unless k=no(n), and is O(log 2 k)=O(log 2 n) for k=no(n). Our result shows that the min-power and the min-cost versions of the $\textsf{$\textsf{ problem are equivalent with respect to approximation, unless the min-cost variant admits an o(log n)-approximation, which seems to be out of reach at the moment.  相似文献   

9.
Although deciding whether the vertices of a planar graph can be colored with three colors is NP-hard, the widely known Grötzsch’s theorem states that every triangle-free planar graph is 3-colorable. We show the first o(n 2) algorithm for 3-coloring vertices of triangle-free planar graphs. The time complexity of the algorithm is $\mathcal{O}(n\log n)Although deciding whether the vertices of a planar graph can be colored with three colors is NP-hard, the widely known Gr?tzsch’s theorem states that every triangle-free planar graph is 3-colorable. We show the first o(n 2) algorithm for 3-coloring vertices of triangle-free planar graphs. The time complexity of the algorithm is O(nlogn)\mathcal{O}(n\log n) .  相似文献   

10.
Previous research on developing parallel triangulation algorithms concentrated on triangulating planar point sets.O(log3 n) running time algorithms usingO(n) processors have been developed in Refs. 1 and 2. Atallah and Goodrich(3) presented a data structure that can be viewed as a parallel analogue of the sequential plane-sweeping paradigm, which can be used to triangulate a planar point set inO(logn loglogn) time usingO(n) processors. Recently Merks(4) described an algorithm for triangulating point sets which runs inO(logn) time usingO(n) processors, and is thus optimal. In this paper we develop a parallel algorithm for triangulating simplicial point sets in arbitrary dimensions based on the idea of the sequential algorithm presented in Ref. 5. The algorithm runs inO(log2 n) time usingO(n/logn) processors. The algorithm hasO(n logn) as the product of the running time and the number of processors; i.e., an optimal speed-up.  相似文献   

11.
Parallel algorithms for the problems of selection and searching on sorted matrices are formulated. The selection algorithm takesO(lognlog lognlog*n) time withO(n/lognlog*n) processors on an EREW PRAM. This algorithm can be generalized to solve the selection problem on a set of sorted matrices. The searching algorithm takesO(log logn) time withO(n/log logn) processors on a Common CRCW PRAM, which is optimal. We show that no algorithm using at mostnlogcnprocessors,c≥ 1, can solve the matrix search problem in time faster than Ω(log logn) and that Ω(logn) steps are needed to solve this problem on any model that does not allow concurrent writes.  相似文献   

12.
The connected vertex cover problem is a variant of the vertex cover problem, in which a vertex cover is additional required to induce a connected subgraph in a given connected graph. The problem is known to be NP-hard and to be at least as hard to approximate as the vertex cover problem is. While several 2-approximation NC algorithms are known for vertex cover, whether unweighted or weighted, no parallel algorithm with guaranteed approximation is known for connected vertex cover. Moreover, converting the existing sequential 2-approximation algorithms for connected vertex cover to parallel ones results in RNC algorithms of rather high complexity at best.In this paper we present a 2-approximation NC (and RNC) algorithm for connected vertex cover (and tree cover). The NC algorithm runs in O(log2n) time using O(Δ2(m+n)/logn) processors on an EREW-PRAM, while the RNC algorithm runs in O(logn) expected time using O(m+n) processors on a CRCW-PRAM, when a given graph has n vertices and m edges with maximum vertex degree of Δ.  相似文献   

13.
Sergio Cabello 《Algorithmica》2012,62(1-2):361-381
We show how to compute in O(n 4/3log?1/3 n+n 2/3 k 2/3log?n) time the distance between k given pairs of vertices of a planar graph G with n vertices. This improves previous results whenever (n/log?n)5/6kn 2/log?6 n. As an application, we speed up previous algorithms for computing the dilation of geometric planar graphs.  相似文献   

14.
In this paper, we first develop a parallel algorithm for computingK-terminal reliability, denoted byR(GK), in 2-trees. Based on this result, we can also computeR(GK) in partial 2-trees using a method that transforms, in parallel, a given partial 2-tree into a 2-tree. Finally, we solve the problem of finding most vital edges with respect toK-terminal reliability in partial 2-trees. Our algorithms takeO(log n) time withC(m, n) processors on a CRCW PRAM, whereC(m, n) is the number of processors required to find the connected components of a graph withmedges andnvertices in logarithmic time.  相似文献   

15.
This paper is composed of two parts. In the first part, an improved algorithm is presented for the problem of finding length-bounded two vertex-disjoint paths in an undirected planar graph. The presented algorithm requires O(n3bmin) time and O(n2bmin) space, where bmin is the smaller of the two given length bounds. In the second part of this paper, we consider the minmax k vertex-disjoint paths problem on a directed acyclic graph, where k?2 is a constant. An improved algorithm and a faster approximation scheme are presented. The presented algorithm requires O(nk+1Mk−1) time and O(nkMk−1) space, and the presented approximation scheme requires O((1/?)k−1n2klogk−1M) time and O((1/?)k−1n2k−1logk−1M) space, where ? is the given approximation parameter and M is the length of the longest path in an optimal solution.  相似文献   

16.
Approximation Algorithms for the Directed k-Tour and k-Stroll Problems   总被引:1,自引:0,他引:1  
We consider two natural generalizations of the Asymmetric Traveling Salesman problem: the k-Stroll and the k-Tour problems. The input to the k-Stroll problem is a directed n-vertex graph with nonnegative edge lengths, an integer k, as well as two special vertices s and t. The goal is to find a minimum-length s-t walk, containing at least k distinct vertices (including the endpoints s,t). The k-Tour problem can be viewed as a special case of k-Stroll, where s=t. That is, the walk is required to be a tour, containing some pre-specified vertex s. When k=n, the k-Stroll problem becomes equivalent to Asymmetric Traveling Salesman Path, and k-Tour to Asymmetric Traveling Salesman. Our main result is a polylogarithmic approximation algorithm for the k-Stroll problem. Prior to our work, only bicriteria (O(log2 k),3)-approximation algorithms have been known, producing walks whose length is bounded by 3OPT, while the number of vertices visited is Ω(k/log2 k). We also show a simple O(log2 n/loglogn)-approximation algorithm for the k-Tour problem. The best previously known approximation algorithms achieved min(O(log3 k),O(log2 n?logk/loglogn)) approximation in polynomial time, and O(log2 k) approximation in quasipolynomial time.  相似文献   

17.
Two algorithms for shortest path problems are presented. One is to find the all-pairs shortest paths (APSP) that runs in O(n 2logn + nm) time for n-vertex m-edge directed graphs consisting of strongly connected components with O(logn) edges among them. The other is to find the single-source shortest paths (SSSP) that runs in O(n) time for graphs reducible to the trivial graph by some simple transformations. These algorithms are optimally fast for some special classes of graphs in the sense that the former achieves O(n 2) which is a lower bound of the time necessary to find APSP, and that the latter achieves O(n) which is a lower bound of the time necessary to find SSSP. The latter can be used to find APSP, also achieving the running time O(n 2).  相似文献   

18.
We present a distributed algorithm that constructs an O(log n)-approximate minimum spanning tree (MST) in any arbitrary network. This algorithm runs in time Õ(D(G) + L(G, w)) where L(G, w) is a parameter called the local shortest path diameter and D(G) is the (unweighted) diameter of the graph. Our algorithm is existentially optimal (up to polylogarithmic factors), i.e., there exist graphs which need Ω(D(G) + L(G, w)) time to compute an H-approximation to the MST for any $H\,\in\,[1, \Theta({\rm log} n)]We present a distributed algorithm that constructs an O(log n)-approximate minimum spanning tree (MST) in any arbitrary network. This algorithm runs in time ?(D(G) + L(G, w)) where L(G, w) is a parameter called the local shortest path diameter and D(G) is the (unweighted) diameter of the graph. Our algorithm is existentially optimal (up to polylogarithmic factors), i.e., there exist graphs which need Ω(D(G) + L(G, w)) time to compute an H-approximation to the MST for any . Our result also shows that there can be a significant time gap between exact and approximate MST computation: there exists graphs in which the running time of our approximation algorithm is exponentially faster than the time-optimal distributed algorithm that computes the MST. Finally, we show that our algorithm can be used to find an approximate MST in wireless networks and in random weighted networks in almost optimal ?(D(G)) time.  相似文献   

19.
LetG be a connected graph withn vertices andm edges. We develop an algorithm that finds the (unique) prime factors ofG with respect to the Cartesian product inO(m logn) time andO(m) space. This shows that factoringG is at most as costly as sorting its edges. The algorithm gains its efficiency and practicality from using only basic properties of product graphs and simple data structures.  相似文献   

20.
We study approximation algorithms and hardness of approximation for several versions of the problem of packing Steiner trees. For packing edge-disjoint Steiner trees of undirected graphs, we show APX-hardness for four terminals. For packing Steiner-node-disjoint Steiner trees of undirected graphs, we show a logarithmic hardness result, and give an approximation guarantee ofO (√n logn), wheren denotes the number of nodes. For the directed setting (packing edge-disjoint Steiner trees of directed graphs), we show a hardness result of Θ(m 1/3/−ɛ) and give an approximation guarantee ofO(m 1/2/+ɛ), wherem denotes the number of edges. We have similar results for packing Steiner-node-disjoint priority Steiner trees of undirected graphs. Supported by NSERC Grant No. OGP0138432. Supported by an NSERC postdoctoral fellowship, Department of Combinatorics and Optimization at University of Waterloo, and a University start-up fund at University of Alberta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号