首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对一种基于扰流作用的多层蜂窝形微通道热沉结构设计,在不同流量、不同加热功率、不同热沉设计尺寸等实验条件下时其进行了散热测试实验,对影响该系统性能的因素进行了分析和讨论.散热实验结果显示在热沉进出口管径采用外径为φ6 mm,内径为φ4 mm不锈钢毛细管时,其有效散热热流密度可达18.2 W/cm2,基板温度为48.3℃,微泵耗功为2.4 W,具有良好的换热效果.  相似文献   

2.
针对原curamik微通道热沉因进水通道流量不均而导致散热不均匀的现象,基于FLUENT软件对其进行数值模拟。从内部结构及热沉材料方面提出优化方案,并进一步获得在热沉高度和进出口宽度为固定值的条件下,微通道宽度、间距及通道脊长度3个因素分别对芯片表面温升和压降的影响规律。根据优化的参数,通过选区激光熔化技术制备获得纯镍微通道热沉并进行芯片封装测试。结果显示,微通道热沉散热均匀,热阻为0.39K/W,压降为140kPa,能够满足输出功率为80 W的半导体激光器单巴条芯片的散热要求。  相似文献   

3.
为实现片状结构高重复频率大能量激光放大器的高效热管理,采用有限元分析(FEA)方法,充分考虑增益介质内部非均匀热分布、微通道热沉中的流速、对流扩散等影响因素,引入流-热-固多物理场耦合数值分析模型,对激光放大器热沉进行分析优化,并基于优化结果探讨了不同流速下微通道热沉的散热冷却能力。模拟结果表明:当基底厚度Hb=2 mm、单个微通道高度Hc=4 mm和宽度Wc=0.4 mm、两微通道的间距Ww=0.3 mm时,微通道热沉冷却能力最强,热阻最小;微通道内冷却液流速过大会导致较大的流动压力损失;微通道热沉的平均等效换热系数可达50000 W/(m2·K)。  相似文献   

4.
高功率微波装置在运行时面临的高热流密度散热是当前热控必须解决的难题。微小通道热沉散热结构简单,换热能力突出,在一定程度上能够解决高热流密度散热的问题。但使用微小通道热沉散热时,散热面温度在沿工质流动方向不断升高,这对器件稳定运行不利。而射流冲击技术中流体垂直于热源喷射,温度边界层薄,温度梯度大,换热效果强。将射流冲击技术与微通道热沉相结合,不仅能提高换热系数,增大换热量,而且能实现良好的温度均匀性。对高热流密度下射流冲击微小通道热沉进行数值模拟,分析不同射流孔径对其传热和流动特性的影响。结果表明,增大远离出口处的射流孔径,有利于提高传热效率和减小流动阻力。优化后的射流微通道热沉,在质量流量为14 g/s时,换热系数接近39 000 W/(m2·K)。  相似文献   

5.
为改善高功率固体激光器的散热性能,以R600a为冷却工质,将制冷系统和喷雾冷却系统相结合,设计了一体化制冷喷雾冷却系统,并进一步研究了热流密度、蒸发压力、喷嘴进口压力对换热性能的影响。实验中在123 W/cm2的热流密度条件下,可保证热沉表面温度低于60℃;在喷嘴进口压力350 kPa,蒸发压力185 kPa的条件下换热系数可以达到25000 W/(m2.K),在热流密度130 W/cm2时,热沉表面温度标准差为2.5℃。结果表明,该系统能够获得较低的热沉表面温度、温度分布均匀并且具有较高的换热系数,能够满足高功率固体激光器对散热的需求。  相似文献   

6.
从大功率半导体激光器可靠性封装和应用考虑,利用商用有限元软件Abaqus与CFdesign对微通道热沉材料、结构进行优化设计,结合相应的制造工艺流程制备实用化复合型微通道热沉。微通道热沉尺寸为27 mm×10.8 mm×1.5 mm,并利用大功率半导体激光阵列器件对所制备热沉进行散热能力、封装产生的"微笑效应"进行了测试,复合微通道热沉热阻约0.3 K/W,"微笑"值远小于无氧铜微通道封装线阵列,可以控制在1μm以下。复合型微通道热沉能满足半导体激光阵列器件高功率集成输出的散热需求与硬焊料封装的可靠性要求。  相似文献   

7.
针对大功率LED阵列的热控问题,提出了一种内凹形("Ω"形)铜基微通道热沉,并采用数值模拟(CFD)方法分析对比了其与常见矩形微通道热沉的性能。此外,还对其在不同流速、进口水温、热流密度下的单相对流传热、流动性能进行了研究。结果表明,该内凹形微通道较常见的矩形微通道热沉,通过减少泵功损失获得了更高的综合性能;采用较高的流速和较小的进口水温能够提高其换热性能,增大热沉底面温度均匀性,从而提高LED的寿命和稳定性;雷诺数约为300时,层流向湍流转捩。  相似文献   

8.
高光束质量大功率半导体激光阵列的微通道热沉   总被引:1,自引:0,他引:1  
针对现有高光束质量大功率半导体激光阵列内部发光单元条宽、填充因子不断减小,腔长不断增加的发展趋势所带来的热源分布及长度变化影响器件热阻的问题,利用分离热源边界条件结合商用计算流体力学(CFD)软件FLUENT进行数值计算,获得微通道热沉热阻随阵列器件发光单元条宽、空间位置变化关系以及不同阵列腔长对应的微通道优化长度.根据优化参数制备获得尢氧铜微通道热沉,并对宽1 cm,腔长1 mm,条宽100μm,填充因子为25%的半导体激光阵列进行散热能力测试,冷却器外形尺寸27 mm×11 mm×1.5 mm.微通道热沉热阻0.34 K/W,能够满足半导体激光阵列器件高功率集成输出的散热需求.  相似文献   

9.
建立了三维树型微通道换热器模型,模拟并分析了其热流耦合场。对比了单、双层微通道换热器的最高温度及双层树型微通道在顺流、逆流、交叉流3种情况下的冷却效果。底部热流密度qw=50W·cm-2时,单层微通道底面最高温度为102.5℃,双层微通道底面最高温度均低于63.38℃,且底面低于60℃部分所占比例均高于60%。双层微通道冷却效果明显优于单层微通道,且在逆流方式下,双层微通道底面温度分布均匀,中心部分具有较低温度,有效改善了一般换热器散热不均而造成的中心部分温度过高的问题。  相似文献   

10.
两相冲击强化换热激光二极管用单片热沉   总被引:2,自引:2,他引:0  
针对大功率激光二极管(LD)的冷却需求,基于沸腾-空化耦合效应,以及场协同理论,研制了一种微通道两相冲击强化相变热沉,封装腔长1.5 mm的LD线阵。实验测试了连续功率LD输出0~100 W时的电-光转换效率以及电流-输出功率等特性,冷却工质采用R134a,磁驱齿轮泵电机转速23 Hz时热沉热阻为0.211℃/W。结果显示微通道相变热沉具有良好的取热能力,能够满足大功率LD的散热要求。与改进前的热沉相比,基于场协同理论优化了的两相冲击热沉,热阻明显下降。  相似文献   

11.
赵恒  李波  胡友友  王炜  王振 《激光技术》2017,41(4):566-572
为了提高激励源的热稳定性,保证4kW轴快流CO2激光器的光束质量,采用计算流体动力学的方法,理论分析了激光器激励源热沉的散热机理,对热流密度为106W/m2、面积为16cm2的激励源热沉结构进行了优化设计。结果表明,经过优化之后的热沉其表面的最高温度低于340K,完全能够满足激光器正常工作时激励源核心功率MOSFET对散热指标的要求;同时经过数值模拟得到了带凹槽微通道热沉的优化结构尺寸,分别是微通道凹槽间距P=0.6mm,微通道凹槽倾角θ=45°,微通道凹槽交错距离s=0.1mm,同时当雷诺数Re=546.9时,热沉有最优的散热效果,激光输出功率的稳定度可以控制在±2%以内。此研究为设计具有高效散热能力的微通道热沉提供了理论指导。  相似文献   

12.
新型发射极指组合结构功率SiGe HBT热分析   总被引:2,自引:0,他引:2  
提出了一种发射极指分段和非均匀发射极指长、指间距组合的新型器件结构,以改善多指功率硅锗异质结双极晶体管(SiGe HBT)的热稳定性。考虑器件具有多层热阻,发展建立了相应的热传导模型。以十指功率SiGe HBT为例,运用有限元方法对其进行热模拟,得到三维温度分布。与传统发射极结构器件相比,新结构器件最高结温从416.3 K下降到405 K,各个发射指上的高低温差从7 K~8 K下降为1.5 K~3 K,热阻值下降14.67 K/W,器件整体温度分布更加均匀。  相似文献   

13.
随着集成电路制程趋于极限,登纳德缩放定律逐步失效,芯片的功率密度逐渐提升,尤其是在5G、物联网以及高性能计算快速发展的驱动下,单芯片面积也在增大,热耗散问题日趋严重,传统的冷却方式已无法保证芯片的可靠工作.将热沉制备在芯片内部可以避免封装材料的导热热阻和多层界面热阻,提升冷却性能和冷却效率.学术界针对芯片的嵌入式微流体冷却开展了大量卓有成效的研究和探索,不断提出新型通道结构设计方案,包括平行长直通道、歧管通道、射流通道等.旨在于优化泵功和热阻,在小压降下实现高效冷却.然而,随着芯片面积的增大,在限域空间实现高效冷却将更加困难,工艺难度和制造成本限制了嵌入式液冷的大规模商业化使用,目前在实际IC芯片内演示的冷却方案验证了嵌入式冷却的性能,但复杂度高,兼容性差,冷却性能有待进一步提升.尤其是在3D封装架构下,需要提出兼容小型化、高密度封装的通道结构,通过协同设计,在保证电学互连的前提下实现层间冷却.在优化通道结构设计的同时,还需要简化工艺,降低成本,提升嵌入式微流体冷却的工艺可靠性和长期工作可靠性,才能推进嵌入式微流体冷却技术的实际应用.  相似文献   

14.
李文龙  谢志辉  奚坤  关潇男  戈延林 《半导体光电》2021,42(3):364-370, 417
建立了多孔侧肋双层微通道复合热沉模型,选取最大热阻最小化为优化目标、热沉单元端面纵横比为优化变量,在热沉总体积和流体区域体积占比给定的条件下,对复合热沉进行了构形优化,并分析了冷却剂入口速度、多孔材料孔隙率、上下通道高度比、流体区域体积占比、肋厚比等参数对热沉最优构形的影响.结果表明:给定初始条件,优化热沉单元端面纵横比,可使最大热阻减小21.19%;在热沉单元端面纵横比较小时,减小孔隙率有利于降低最大热阻,而在热沉单元端面纵横比较大时,存在最优的孔隙率使得最大热阻最小;上下通道高度比和肋厚比的改变均未影响热沉最优构形.  相似文献   

15.
重庆师范学院应用物理研究室已经用自己的工艺制造出高功率激光二极管线阵的微沟道冷却封装组件。通过泵压一流量 ,耗散热一温升 ,激光峰位波长—压强差倒数等曲线的测量可推算出的该器件热阻系数随水力学功变化的公式。  相似文献   

16.
为了改善垂直腔面发射半导体激光器(VCSEL)的热特性,提高器件的输出功率,设计并制作了一种新型辐射桥结构VCSEL。利用有限元热分析软件ANSYS,模拟了常规结构和辐射桥结构VCSEL内部的热场分布和热矢量分布。经模拟得到,常规结构器件的热阻为4.13K/W,辐射桥结构的热阻为2.64K/W。而经实验测得,常规结构器件的热阻为4.40K/W,辐射桥结构器件的热阻为2.93K/W,实验测试结果与模拟结果吻合较好。同时测得,常规结构器件的最大输出功率为305mW,辐射桥结构器件的最大输出功率为430mW,后者的输出功率提高了40%。  相似文献   

17.
众所周知,热效应是限制大功率高能量激光器发展的一大瓶颈,在高能激光产生的过程中伴随着大量的废热产生,影响高能量激光器的光束质量甚至会影响其正常工作。为了保证高能量激光器的稳定运作并研究其工作物质的散热过程中的热分布状态,本文建立了一种用于高能Zig-Zag板条激光放大器的双端入水微通道散热模型,利用CFD模拟仿真软件在额定工况下对微通道与空腔热沉进行散热对比,还研究了模型的可变参量:通道高度、翅片厚度,以及水流量对于散热性能的影响。模拟研究发现本文提出的微通道热沉冷却效果优于全腔水冷效果,微通道热沉将晶体表面最高温差控制在4℃以内,表面温度也降低了32%;同时在压降允许范围内优化通道参数能再将冷却效果提升10%,实现增益介质分布式高效散热。  相似文献   

18.
千瓦级连续激光二极管面阵及微沟道冷却组件   总被引:1,自引:2,他引:1  
千瓦级连续激光二极管面阵由30个40W的808nm连续激光二极管条组成,按要求排列成5×6矩阵,发光孔径12mm×70mm。每个激光二极管条安装在微沟道冷却封装组件上,依靠高压冷却水通过微沟道维持连续运行。面阵的30个二极管条的电路串联,冷却水道并联,恒流电流50A时,发射连续1060W,808nm波长的激光,平均功率密度126W/cm2。5个K型热电偶安装在面阵不同位置测量激光二极管底部附近硅热沉的温度随耗散热功率的增加,面阵整体热阻的测量值为0.009℃/W。千瓦级连续面阵可用于抽运大功率固体激光器,也可用于材料表面热处理。  相似文献   

19.
激光二极管合束模块整体散热热阻分析   总被引:1,自引:0,他引:1  
半导体激光器散热是在热源至热沉之间尽可能提供一条低的热阻通路。其主要目的是降低外热阻(即激光器芯片至散热空间的热阻),使发热激光器芯片与被冷却表面之间保持一个低的温度梯度和良好的热接触。对于接触热阻冷却方法,人们往往根据自身的研究对象,用实验方法来解决接触热阻的问题。通过对单管合束模块整体热阻逐步进行分析,通过软件模拟和结合频率红移法对激光二极管热阻进行测量,得出单管合束模块整体散热热阻小于0.25 ℃/W。此散热模块可以满足百瓦级半导体激光器的散热要求。  相似文献   

20.
廖星  吴亦农  谢荣建 《红外》2017,38(6):30-35
制造了一台铝基平板热管原理样机,并搭建了测试装置。利用该测试装置对样机的特性进行了系统性的实验研究。实验表明,热管对温度响应迅速,能够快速地实现温度平衡;200 W功率时,冷热面上的温差仅为0.87℃和1.37℃。随着热流密度的增加,热管温度均匀性的优势变得更加明显,热阻仅为0.100℃/W。该热管样机具备优秀的启动性能、均温性能和良好的传热性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号