首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The selection of an optimal material for an engineering design from among two or more alternative materials on the basis of two or more attributes is a multiple attribute decision making (MADM) problem. The selection decisions are complex, as material selection is more challenging today. There is a need for simple, systematic, and logical methods or mathematical tools to guide decision makers in considering a number of selection attributes and their interrelations and in making right decisions. This paper proposes a novel MADM method for material selection for a considered design problem. The method considers the objective weights of importance of the attributes as well as the subjective preferences of the decision maker to decide the integrated weights of importance of the attributes. Furthermore, the method uses fuzzy logic to convert the qualitative attributes into the quantitative attributes. Three examples are presented to illustrate the potential of the proposed method.  相似文献   

2.
多孔材料吸声性能分析与设计优化   总被引:1,自引:0,他引:1  
多孔材料的吸声性能依赖于基体材料的性质、孔的形状与尺寸以及孔隙分布方式。利用多孔材料的高吸声性能和可设计性特点,研究和设计高吸声制材料与结构意义重大。采用表面阻抗法和传递矩阵法研究规则有序的圆柱形孔多孔金属材料与结构的声传播特性,建立声能吸收率与孔的尺寸和孔隙率之间的解析关系,并以圆柱形孔的尺寸沿材料厚度方向的变化规律为设计参数,建立以特定频率下层状多孔结构声能吸收率为目标的优化问题的提法和求解方法,得到一种具有较高声能吸收率的梯度多孔结构。  相似文献   

3.
The integration of materials selection and design are essential to the success of new product development, especially when applied to biomedical devices. The knee prosthesis, like any other implant, is a product that still lacks satisfactory design solutions for solving the problem of aseptic loosening. Stress shielding is one of the main causes of aseptic loosening that is intimately related to the overall design of the knee prosthesis. The design of the location pegs in the femoral component of the knee prosthesis is seen to have a critical effect on the stress shielding. In this study, therefore, different combinations of location peg geometries and material designs were assessed using finite element analyses in conjunction with a design of experiments procedure. The materials considered were Co–Cr alloy (as reference material) and functionally graded material (FGM) for the main body of the femoral component, and various porous materials for the pegs (as promising new materials). The performance outputs (responses) were stress levels in the femoral bone to assess the stress shielding effect, and stress levels in the pegs to assess adequate peg strength. The result revealed conflicts in satisfying the design objectives. Therefore, a multi-objective optimization was carried out to find the optimal geometries of the pegs for the femoral component. Based on the findings of the optimization process, a set of candidate designs was generated and a multi-criteria decision making approach used to obtain the final ranking of candidate designs. The ranking order demonstrated the superiority of using a FGM femoral component with porous material pegs of conical geometry. By comparing the results with the standard Co–Cr design, it was shown that the new design of pegs can significantly increase the magnitude of stresses seen at the distal femur; hence reduce the stress shielding effect, without over compromising on the strength of the pegs.  相似文献   

4.
5.
Design for Manufacturing, Assembly, and Disassembly is important in today’s production systems because if this aspect is not considered, it could lead to inefficient operations and excessive material usage, both of which have a significant impact on manufacturing cost and time. Attention to this topic is important in achieving the target standards of Industry 4.0 which is inclusive of material utilisation, manufacturing operations, machine utilisation, features selection of the products, and development of suitable interfaces with information communication technologies (ICT) and other evolving technologies. Design for manufacturing (DFM) and Design for Assembly (DFA) have been around since the 1980’s for rectifying and overcoming the difficulties and waste related to the manufacturing as well as assembly at the design stage. Furthermore, this domain includes a decision support system and knowledge base with manufacturing and design guidelines following the adoption of ICT. With this in mind, ‘Design for manufacturing and assembly/disassembly: Joint design of products and production systems’, a special issue has been conceived and its contents are elaborated in detail. In this paper, a background of the topics pertaining to DFM, DFA and related topics seen in today’s manufacturing systems are discussed. The accepted papers of this issue are categorised in multiple sections and their significant features are outlined.  相似文献   

6.
李宏 《包装工程》2022,43(14):272-278
目的 实施乡村振兴战略必须要优先考虑生态文明,以绿色发展引领美丽乡村的振兴。农村废弃秸秆焚烧产生的大量烟雾会对大气造成污染,从绿色模块化设计角度出发,分析秸秆材料的特点以及设计的多种可能性,对废弃秸秆进行有效利用以减少焚烧污染,将乡土材料转换为可利用的资源。方法 运用绿色模块化设计理念以功能与结构的相关性进行聚类划分,在此基础上对划分的模块进行零件变型设计,形成产品族的扩展设计,以增加产品的绿色属性及个性化需求。结论 明确了模块划分在秸秆材料家具设计中的实现方法,使其符合现代家具产品的使用功能、绿色属性及美学特征,拓展了自然材料在现代家具产品设计中的应用范围,优化了秸秆材料设计在家具领域的方法,传达了乡村振兴下的绿色生态发展理念。  相似文献   

7.
Porous materials possessing high surface area, large pore volume, tunable pore structure, superior tailorability, and dimensional effect have been widely applied as components of lithium–oxygen (Li–O2) batteries. Herein, the theoretical foundation of the porous materials applied in Li–O2 batteries is provided, based on the present understanding of the battery mechanism and the challenges and advantageous qualities of porous materials. Furthermore, recent progress in porous materials applied as the cathode, anode, separator, and electrolyte in Li–O2 batteries is summarized, together with corresponding approaches to address the critical issues that remain at present. Particular emphasis is placed on the importance of the correlation between the function-orientated design of porous materials and key challenges of Li–O2 batteries in accelerating oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) kinetics, improving the electrode stability, controlling lithium deposition, suppressing the shuttle effect of the dissolved redox mediators, and alleviating electrolyte decomposition. Finally, the rational design and innovative directions of porous materials are provided for their development and application in Li–O2 battery systems.  相似文献   

8.
Weight reduction is commonly adopted in vehicle design as a means for energy and emissions savings. However, selection of lightweight materials is often focused on performance characteristics, which may lead to sub optimizations of life cycle environmental impact. Therefore systematic material selection processes are needed that integrate weight optimization and environmental life cycle assessment. This paper presents such an approach and its application to design of an automotive component. Materials from the metal, hybrid and polymer families were assessed, along with a novel self-reinforced composite material that is a potential lightweight alternative to non-recyclable composites. It was shown that materials offering the highest weight saving potential offer limited life cycle environmental benefit due to energy demanding manufacturing. Selection of the preferable alternative is not a straightforward process since results may be sensitive to critical but uncertain aspects of the life cycle. Such aspects need to be evaluated to determine the actual benefits of lightweight design and to base material selection on more informed choices.  相似文献   

9.
There are several tools used in materials selection processes by designers. However, they are mostly engineering based tools, which are dominated by numerical (or technical) material data that is mostly of use in embodiment or detailed design phases of new product development. On the other hand, product designers consider certain aspects such as product personality, user-interaction, meanings, emotions in their material decisions. In this regard, existing tools and methods do not fully support designers in their materials selection processes. This paper describes the development of a new materials selection tool holding the idea of [meaning driven materials selection]. In addition, the paper consists of a study conducted to create data for a dummy application.  相似文献   

10.
Part 1 (A.M. Lovatt, H.R. Shercliff, J. Mater Des., 19 (1998) 205–215) of this paper identified a need for a methodology to help to create selection procedures for specific manufacturing tasks, where the material and processing operation have, to some extent, already been defined. This paper develops such a methodology, and its aims are twofold: firstly to guide the designer through defining the requirements of the design and identifying the attributes of the relevant subset of processes which must be considered; secondly to lead the designer through an evaluation of a design considering both technical viability (including the product quality during processing and in the finished part), and economic viability. A critical development in this work is the incorporation of process modelling into the selection procedure, as a tool for capturing the coupling of material and process characteristics which govern whether the processing and performance targets can be met.  相似文献   

11.
增材制造的多孔金属生物材料广泛应用于植入物骨骼等生物医用工业领域,具有很大的发展潜力,目前,对多孔金属生物材料的研究主要聚焦在多孔生物材料的设计、制造与表面处理等方面.对比了不同增材制造技术的特点,并说明了粉床熔融技术最适合多孔金属生物材料的制造.同时,讨论了不同金属生物材料(生物惰性材料与降解材料)制造多孔生物材料的...  相似文献   

12.
混凝土是现代土木工程建设的基础和关键结构材料,现代工程建设的发展对混凝土性能提出新的挑战。水化硅酸钙(C-S-H)是水泥水化最重要的产物(约占水化产物的70%),也是混凝土中最重要的胶结性物质,起到胶结砂石骨料、发挥强度的关键作用。在微观尺度上,C-S-H是一种多孔介质材料,组成结构十分复杂。因此,对C-S-H微观力学性能进行解析和设计,是认识和提高水泥基材料宏观力学性能的关键,同时也是混凝土研究领域的基础科学问题。该文旨在介绍混凝土微观力学性能表征方法、混凝土微观力学计算理论以及其在混凝土应用过程的新发现,同时展望混凝土微观力学在工程建设中的应用。  相似文献   

13.
This paper studies various work on the development of computerized material selection system. The importance of knowledge-based system (KBS) in the context of concurrent engineering is explained. The study of KBS in material selection in an engineering design process is described. The development in materials databases, which sometimes serve as material selection packages, is also discussed. The use of KBS in material selection and the application in the domain of polymeric-based composite are chosen as typical examples.  相似文献   

14.
Abstract

Applications for metal matrix composites (MMCs) have not emerged at the rate needed to justify the development costs. A reason for this may be that material developments have not been adequately linked to identified commercial needs. It is certainly true that some of the expectations raised about the potential offered by MMCs have been misguided. As the MMC business contracts, there is an ever greater need for a systematic method of linking material properties to the needs of engineering designers. This paper presents a methodology for evaluating materials in design, with the aim of linking MMCs to applications. The methodology has two main components: first, the use of performance indices and materials selection charts for specific design goals, to compare existing MMCs with competing materials; and secondly, the conceptual design of new MMC systems guided by those design goals. A selection of case studies illustrates that in mechanical applications the gains in using MMCs are frequently marginal, whereas in design for thermal management and vibration control, the materials can show very substantial improvements in performance. The methodology is general, and could be applied to other material systems.

MST/3094  相似文献   

15.
R. Venkata Rao   《Materials & Design》2008,29(10):1949-1954
An ever increasing variety of materials is available today, with each having its own characteristics, applications, advantages, and limitations. In choosing the right material, there is not always a single definite attribute of selection and the designers and engineers have to take into account a large number of material selection attributes. This paper presents a logical procedure for material selection for a given engineering application. The procedure is based on an improved compromise ranking method considering the material selection attributes and their relative importance for the application considered. Two examples are included to illustrate the approach.  相似文献   

16.
目的以人为本的人工智能作为一种独特的设计材料正成为智能产品设计的新关注点,也带来了全新的挑战。分析人本人工智能背景下的智能产品设计特点,总结人本智能产品设计的现状并预测其发展趋势,能够对智能产品设计的未来发展提供参考。方法分析机器思维与设计思维的差异,以阐述人本人工智能背景下智能产品设计的特点。从设计方法和设计工具两个层面总结目前的研究现状,梳理以人为中心的智能产品设计的发展脉络。结论智能产品设计正逐渐从技术驱动转向以人为本,逐步整合机器思维与设计思维。然而,目前针对人工智能技术的设计方法和设计工具仍相对较少,智能产品的设计实践迫切需要符合人工智能技术特性的设计教育、设计方法与工具,以弥合机器思维与设计思维的差异。  相似文献   

17.
This paper uses a genetic algorithm for component selection given a user-defined system layout, a database of components, and a defined set of design specifications. A genetic algorithm is a search method based on the principles of natural selection. An introduction to genetic algorithms is presented, and genetic algorithm attributes that are useful for component selection are explored. A comparison of these attributes is performed using two industrial design problems. A set of genetic algorithm attributes including integer coding, uniform crossover, anti-incest mating, variable mating and mutation rates, retention of population members from generation to generation, and an attention shifted penalty function are suggested for a more efficient search in component selection problems.  相似文献   

18.
The self-dissipation and attenuation capacity of materials play an important role in realizing efficient electromagnetic absorption,in this case,the roles of macroscopic composition and micro-structure should be emphasized simultaneously in the reasonable design of microwave absorbent.Given that,Fe3N alloy embedded in two-dimensional porous carbon composites were fabricated via facile sol-gel and sacrificial template methods.Satisfactorily,the magnetic/dielectric materials combination and porous structure introduction are conductive to the optimization of impedance matching property,as result of the enhancement of microwave absorption capacity.In addition,sufficient magnetic loss capacity,strong conductivity as well as polarization attenuation bring about the outstanding microwave absorbing performance with an effective absorption bandwidth of 6.76 GHz and a minimum reflection loss value of-65.6 d B.It is believed that this work not only lay a foundation to achieve microwave response materials in a wide frequency range,but also emphasize the significant role of the component selection and structural design.  相似文献   

19.
《工程(英文)》2021,7(9):1231-1238
The world’s increasing population requires the process industry to produce food, fuels, chemicals, and consumer products in a more efficient and sustainable way. Functional process materials lie at the heart of this challenge. Traditionally, new advanced materials are found empirically or through trial-and-error approaches. As theoretical methods and associated tools are being continuously improved and computer power has reached a high level, it is now efficient and popular to use computational methods to guide material selection and design. Due to the strong interaction between material selection and the operation of the process in which the material is used, it is essential to perform material and process design simultaneously. Despite this significant connection, the solution of the integrated material and process design problem is not easy because multiple models at different scales are usually required. Hybrid modeling provides a promising option to tackle such complex design problems. In hybrid modeling, the material properties, which are computationally expensive to obtain, are described by data-driven models, while the well-known process-related principles are represented by mechanistic models. This article highlights the significance of hybrid modeling in multiscale material and process design. The generic design methodology is first introduced. Six important application areas are then selected: four from the chemical engineering field and two from the energy systems engineering domain. For each selected area, state-of-the-art work using hybrid modeling for multiscale material and process design is discussed. Concluding remarks are provided at the end, and current limitations and future opportunities are pointed out.  相似文献   

20.
The selection of a material for a specific engineering purpose is a lengthy and expensive process. Approximately always more than one material is suitable for an engineering application, and the final selection is a compromise that brings some advantages as well as disadvantages. One of the issues that emerges from this review is that regardless of the relation of design stages and process selection with material selection, screening and ranking are two vital steps in the material selection. A variety of quantitative selection procedures have been developed to solve this issue, so that a systematic evaluation can be made. This paper seeks to address the following questions: (1) what is the contribution of the literature in the field of screening and choosing the materials? (2) What are the methodologies/systems/tools for material selection of engineering components? (3) Which approaches were prevalently applied? (4) Is there any inadequacy of the approaches? This research not only provides evidence that the multi-criteria decision making approaches has the potential to greatly improve the material selection methodology, but also aids the researchers and decision makers in applying the approaches effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号