共查询到19条相似文献,搜索用时 62 毫秒
1.
为了在标记样本数目有限时尽可能地提高支持向量机的分类精度,提出了一种基于聚类核的半监督支持向量机分类方法。该算法依据聚类假设,即属于同一类的样本点在聚类中被分为同一类的可能性较大的原则去对核函数进行构造。采用K-均值聚类算法对已有的标记样本和所有的无标记样本进行多次聚类,根据最终的聚类结果去构造聚类核函数,从而更好地反映样本间的相似程度,然后将其用于支持向量机的训练和分类。理论分析和计算机仿真结果表明,该方法充分利用了无标记样本信息,提高了支持向量机的分类精度。 相似文献
2.
对支持向量机的多类分类问题进行研究,提出了一种基于核聚类的多类分类方法。利用核聚类方法将原始样本特征映射到高维特征进行聚类分组,对每一组使用一个支持向量机二值分类器进行分类,并用这些二值分类器组成决策树的节点,构成了一个决策分类树。给出决策树的生成算法,提出了利用交叠系数来控制交叠,从而克服错分积累,提高分类准确率。实验结果表明,采用该方法,手写体汉字识别速度和正确率都达到了实用的要求。 相似文献
3.
收视率是电视行业重要的指标之一,对电视机构运营决策具有重要参考价值。针对收视率数据影响因素众多,变化趋势复杂等特点,提出了一种基于半模糊核聚类的超球支持向量机分类方法,基于半模糊核聚类生成模糊类,在其边缘样本信息基础上,利用超球支持向量机进行多类分类,从而有效提高分类器性能。实验表明,该方法比传统方法具有更高的速度和精度。 相似文献
4.
支持向量机作为一种新的统计学习方法,在说话人识别中得到了广泛应用。本文针对支持向量机在说话人辨识中的大样本训练耗时问题,提出对语音参数进行模糊核聚类的约简方法,选择聚类边界的语音参数作为支持向量,可以在不影响识别率的情况下,减少支持向量机的训练量。并通过实验验证了该方法的有效性。 相似文献
5.
针对标签均值半监督支持向量机在图像分类中随机选取无标记样本会导致分类正确率不高,以及算法的稳定性较低的问题,提出了基于聚类标签均值的半监督支持向量机算法。该算法修改了原算法对于无标记样本的惩罚项,对选取的无标记样本聚类,使用聚类标签均值替换标签均值。实验结果表明,使用聚类标签均值训练的分类器大大减少了背景与目标的错分情况,提高了分类的正确率以及算法的稳定性,适合用于图像分类。 相似文献
6.
王睿 《计算机与数字工程》2013,(12):1900-1902
传统转导支持向量机有效地利用了未标记样本,具有较高的分类准确率,但是计算复杂度较高。针对该不足,论文提出了一种基于核聚类的启发式转导支持向量机学习算法。首先将未标记样本利用核聚类算法进行划分,然后对划分后的每一簇样本标记为同一类别,最后根据传统的转导支持向量机算法进行新样本集合上的分类学习。所提方法通过对核聚类后同一簇未标记样本赋予同样的类别,极大地降低了传统转导支持向量机算法的计算复杂度。在MNIST手写阿拉伯数字识别数据集上的实验表明,所提算法较好地保持了传统转导支持向量机分类精度高的优势。 相似文献
7.
针对动态图的聚类主要存在着两点不足:首先, 现有的经典聚类算法大多从静态图分析的角度出发, 无法对真实网络图持续演化的特性进行有效建模, 亟待对动态图的聚类算法展开研究, 通过对不同时刻图快照的聚类结构进行分析进而掌握图的动态演化情况.其次, 真实网络中可以预先获取图中部分节点的聚类标签, 如何将这些先验信息融入到动态图的聚类结构划分中, 从而向图中的未标记节点分配聚类标签也是本文需要解决的问题.为此, 本文提出进化因子图模型(Evolution factor graph model, EFGM)用于解决动态图节点的半监督聚类问题, 所提EFGM不仅可以捕获动态图的节点属性和边邻接属性, 还可以捕获节点的时间快照信息.本文对真实数据集进行实验验证, 实验结果表明EFGM算法将动态图与先验信息融合到一个统一的进化因子图框架中, 既使得聚类结果满足先验知识, 又契合动态图的整体演化规律, 有效验证了本文方法的有效性. 相似文献
8.
基于图的算法已经成为半监督学习中的一种流行方法, 该方法把数据定义为图的节点, 用图的边表示数据之间的关系, 在各种数据分布情况下都具有很高的分类准确度. 然而图方法的计算复杂度比较高, 当图的规模比较大时, 计算所需要的时间和存储都非常大, 这在一定程度上限制了图方法的使用. 因此, 如何控制图的大小是基于图的半监督学习算法中的一个重要问题. 本文提出了一种基于密度估计的快速聚类方法, 可以在局部范围对数据点进行聚类, 以聚类形成的子集作为构图的节点, 从而大大降低了图的复杂度. 新的聚类方法计算量较小, 通过推导得到的距离函数能较好地保持原有数据分布. 实验结果表明, 通过局部聚类后构建的小图在分类效果上与在原图上的结果相当, 同时在计算速度上有极大的提高. 相似文献
9.
支持向量机作为一种新的统计学习方法,在说话人识别中得到了广泛应用.本文针对支持向量机在说话人辨识中的大样本训练耗时问题,提出对语音参数进行模糊核聚类的约简方法,选择聚类边界的语音参数作为支持向量,可以在不影响识别率的情况下,减少支持向量机的训练量.并通过实验验证了该方法的有效性. 相似文献
10.
针对传统图转导(GT)算法计算量大并且准确率不高的问题,提出一个基于C均值聚类和图转导的半监督分类算法。首先,采用模糊C均值(FCM)聚类算法先对未标记样本预选取,缩小图转导算法构图数据集的范围;然后,构建k近邻稀疏图,减少相似度矩阵的虚假连接,进而缩减了构图的时间,通过标记传播的方式得出初选未标记样本的标记信息;最后,结合半监督流形假设模型利用扩充的标记数据集以及剩余未标记数据集进行分类器的训练,进而得出最终的分类结果。在Weizmann Horse数据集下,所提算法分类准确率均达到96%以上,和传统仅使用图转导的分类方法相比,解决了对初始标记集的依赖性问题,将准确率至少提高了10%;将所提算法直接运用到兵马俑数据集,分类准确度也达到95%以上,明显高于传统的图转导算法。实验结果表明,基于C均值聚类和图转导的半监督分类算法,在图像分类方面有较好的分类效果,对图像的精准分类具有研究意义。 相似文献
11.
基于图结构的数据表示和分析,在机器学习领域正得到越来越广泛的关注。以往研究主要集中在为图数据定义一个度量其相似性关系的核函数即图核,一旦定义出图核,就可以用标准的支持向量机(SVM)来对图数据进行分类。将图核方法进行扩充,先利用核主成分分析(kPCA)对图核诱导的高维特征空间中的数据进行降维,得到与原始图数据相对应的低维向量表示的数据,然后对这些新得到的数据用传统机器学习方法进行分析;通过在kPCA中利用图数据中的成对约束形式的监督信息,得到基于图核的半监督降维方法。在MUTAG和PTC等标准图数据集上的实验结果验证了所提方法的有效性。 相似文献
12.
13.
14.
15.
图神经网络(graph neural network, GNN)是一种利用深度学习直接对图结构数据进行表征的框架,近年来受到人们越来越多的关注.然而传统的基于消息传递聚合的图神经网络(messaging passing GNN, MP-GNN)忽略了不同节点的平滑速度,无差别地聚合了邻居信息,易造成过平滑现象.为此,研究并提出一种线性结构熵的图核神经网络分类方法,即KENN.它首先利用图核方法对节点子图进行结构编码,判断子图之间的同构性,进而利用同构系数来定义不同邻居间的平滑系数.其次基于低复杂度的线性结构熵提取图的结构信息,加深和丰富图数据的结构表达能力.通过将线性结构熵、图核和图神经网络三者进行深度融合提出了图核神经网络分类方法.它不仅可以解决生物分子数据节点特征的稀疏问题,也可以解决社交网络数据以节点度作为特征所产生的信息冗余问题,同时还使得图神经网络能够自适应调整对图结构特征的表征能力,使其超越MP-GNN的上界(WL测试).最后,在7个公开的图分类数据集上实验验证了所提出模型的性能优于其他的基准模型. 相似文献
16.
17.
18.
19.
在文本分类研究中,向量空间模型具有表示形式简单的特点,但只能表示特征词的词频信息而忽视了特征词间的结构信息和语义语序信息,所以可能导致不同文档被表示为相同向量。针对这种问题,本文采用图结构模型表示文本,把文本表示成一个有向图(简称文本图),可有效解决结构化信息缺失的问题。本文将图核技术应用于文本分类,提出适用于文本图之间的相似度计算的图核算法--间隔通路核,然后利用支持向量机对文本进行分类。在文本集上的实验结果表明:与向量空间模型相比,间隔通路核相比于其他核函数的分类准确率更高,所以间隔通路核是一种很好的图结构相似性计算算法,能广泛应用于文本分类中。 相似文献