首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
近年来,混合型数据的聚类问题受到广泛关注。作为处理混合型数据的一种有效方法,K-prototype聚类算法在初始化聚类中心时通常采用随机选取的策略,然而这种策略在很多实际应用中难以保证聚类结果的质量。针对上述问题,采用基于离群点检测的策略来为K-prototype算法选择初始中心,并提出一种新的混合型数据聚类初始化算法(initialization of K-prototype clustering based on outlier detection and density, IKP-ODD)。给定一个候选对象,IKP-ODD通过计算其距离离群因子、加权密度以及与已有初始中心之间的加权距离来判断候选对象是否是一个初始中心。IKP-ODD通过采用距离离群因子和加权密度,防止选择离群点作为初始中心。在计算对象的加权密度以及对象之间的加权距离时,采用邻域粗糙集中的粒度邻域熵来计算每一个属性的重要性,并根据属性重要性的大小为不同属性赋予不同的权重,有效地反映不同属性之间的差异性。在多个UCI数据集上的实验表明,相对于现有的初始化方法,IKP-ODD能够更好地解决K-prototype聚类的初始化问题。  相似文献   

2.
对于离群点的形成,不同的属性起着不同的作用,离群点在不同的属性域中,会表现出不同的离群特性,在大多数情况下,高维数据空间中的对象是否离群往往取决于这些对象在低维空间中的投影。针对如何将离群点按照形成原因分类的问题,引入离群属性和离群簇等概念,以现有离群挖掘技术为基础,提出了基于离群分类来进行离群点分析的方法,实现了基于聚类的离群点分类算法CBOC(cluster-based outlier classification),以揭示离群点的内涵知识。实验表明了该方法在实际应用中的有效性。  相似文献   

3.
社区离群点是结合数据的社区特性和自身属性挖掘得到的一种特殊离群点。针对现有社区离群点检测算法忽略社区间的重叠现象而导致社区划分不准确的问题,提出一种将对象的特征属性引入到相似度和重叠模块度的计算中的社区离群点检测方法。首先根据节点间的相似度对节点进行聚类,然后根据重叠模块度的变化进行迭代聚类,多次聚类后选取重叠模块度最大的作为划分结果,最终根据特征属性的偏离程度来确定社区离群点,从而解决重叠社区中社区离群点的检测问题。实验结果表明,提出的算法不仅能准确地发现重叠社区而且能有效地检测社区离群点。  相似文献   

4.
在KSummary算法的基础上,引入层次和密度聚类方法,提出自适应多趟聚类方法。依次获得聚类个数k,聚类初始中心和最终聚类。将算法应用于无线传感器网络数据中,可以很好地发现数据中的离群点,从而找到传感器节点安全上存在的隐患。实验结果和分析表明:此算法不但可获得稳定、收敛的聚类结果,还能很好地发现离群点。  相似文献   

5.
基于距离和基于密度的离群点检测算法受到维度和数据量伸缩性的挑战, 而空间数据的自相关性和异质性决定了以属性相互独立和分类属性的基于信息理论的离群点检测算法也难以适应空间离群点检测, 因此提出了基于全息熵的混合属性空间离群点检测算法。算法利用区域标志属性进行区域划分, 在区域内利用空间关系确定空间邻域, 并用R*-树进行检索。在此基础上提出了基于全息熵的空间离群度的度量方法和空间离群点挖掘算法, 有效解决了混合属性的离群度的度量和离群点的挖掘问题。由于实现区域划分有利于并行计算, 从而可适应大数据量的计算。理论和实验证明, 所提算法在计算效率和实验结果的可解释性方面均具有优势。  相似文献   

6.
聚类分析是数据挖掘中一种非常重要的技术.聚类算法中的关键问题是相异度或相似度的度量,聚类结果直接依赖于相异度或相似度度量,尤其对于谱聚类方法更是如此.谱聚类算法是近期兴起的一种基于相似度矩阵的聚类算法.相比于传统的划分型聚类算法,谱聚类算法不受限于球状聚类簇,能够发现不规则形状的聚类簇.在已有的谱聚类算法中,高斯核相似度是最常用的相似度度量准则.基于高斯核相似度度量及其扩展形式,提出了一种加权的自适应的相似度度量,此相似度可以用于谱聚类以及其他基于相似度矩阵的聚类算法.新的相似度度量不仅能够描述多密度聚类簇中数据点间的相似度,而且可以降低离群点(噪声点)与其他数据点间的相似度.实验结果显示新的相似度度量可以更好地描述不同类型的数据集中数据点间的相似度,进而得到更好的聚类结果.  相似文献   

7.
一种基于关键域子空间的离群数据聚类算法   总被引:4,自引:0,他引:4  
离群数据发现与分析是数据挖掘的重要组成部分,现有离群数据挖掘算法主要针对如何检测离群对象,缺乏对挖掘出的离群数据集进行解释与分析的有效方法.通过对离群数据来源及特性进行分析并结合粗糙集理论,定义了离群划分相似度的概念,提出了一种基于关键属性域子空间的离群数据聚类算法COKAS,该算法不仅揭示了离群数据子空间特性,进一步获取了扩展知识,而且有助于对整体数据集的理解.对两个多维数据集的实验结果表明,该算法具有良好的适应性及有效性.  相似文献   

8.
高维空间中的离群点发现   总被引:33,自引:2,他引:33  
在许多KDD(knowledge discovery in databases)应用中,如电子商务中的欺诈行为监测,例外情况或离群点的发现比常规知识的发现更有意义.现有的离群点发现大多是针对数值属性的,而且这些方法只能发现离群点,不能对其含义进行解释.提出了一种基于超图模型的离群点(outlier)定义,这一定义既体现了"局部"的概念,又能很好地解释离群点的含义.同时给出了HOT(hypergraph-based outlier test)算法,通过计算每个点的支持度、隶属度和规模偏差来检测离群点.该算法既能够处理数值属性,又能够处理类别属性.分析表明,该算法能有效地发现高维空间数据中的离群点.  相似文献   

9.
粗糙集中的距离度量与离群点检测   总被引:1,自引:0,他引:1  
针对传统的基于距离的离群点检测方法不能有效地处理具有离散型属性数据集的问题,将基于距离的离群点检测方法引入粗糙集理论,利用粗糙集解决离散型属性的处理问题.首先,在粗糙集的框架中提出3种面向离散型属性的距离度量;然后,针对这3种距离度量分别设计出相应的离群点检测算法,用于从包含离散型属性的数据集中检测离群点;最后,通过在2个包含离散型属性的UCI数据集上的实验,验证了这些算法的可行性和有效性.  相似文献   

10.
针对基于距离的离群点检测算法受全局阈值的限制, 只能检测全局离群点, 提出了基于聚类划分的两阶段离群点检测算法挖掘局部离群点。首先基于凝聚层次聚类迭代出K-means所需的k值, 然后再利用K-means的方法将数据集划分成若干个微聚类; 其次为了提高挖掘效率, 提出基于信息熵的聚类过滤机制, 判定微聚类中是否包含离群点; 最后从包含离群点的微聚类中利用基于距离的方法挖掘出相应的局部离群点。实验结果表明, 该算法效率高、检测精度高、时间复杂度低。  相似文献   

11.
为识别混合属性数据集中的离群点,提出了一种基于共享最近邻的离群检测算法,通过计算增量聚类结果簇间的共享最近邻相似度,不但能够发现任意形状的簇,还可以检测到变密度数据集中的全局离群点。算法时间复杂度关于数据集的大小和属性个数呈近似线性。在人工数据集和真实数据集上的实验结果显示,提出的算法能有效检测到数据集中的离群点。  相似文献   

12.
基于k均值分区的数据流离群点检测算法   总被引:10,自引:0,他引:10  
离群知识发现是数据挖掘研究的一个重要方面,数据流离群点挖掘更因其挖掘对象具有动态性、不可复读性、数据量大等特点而成为离群知识发现研究的一个难点.提出一种基于k均值分区的流数据离群点发现算法,先对数据流进行分区做k均值聚类生成中间聚类结果(均值参考点集),随后在这些均值参考点中,根据离群点的定义找出可能存在的离群点.理论分析和实验结果表明,算法可以有效解决数据流离群点检测问题,算法是有效可行的.  相似文献   

13.
最近几年,谱聚类思想开始用于数据挖掘领域,并取得了较好的效果;离群数据挖掘是对离群点进行检测,发掘出有用知识。将谱聚类中的NJW算法成功应用到离群数据挖掘领域,并结合离群指数的概念,提出了一种适合离群数据挖掘的谱聚类算法。与原有的基于聚类的离群检测算法相比,具有更好的效率和适应性。实验验证了所提算法的有效性和可行性。  相似文献   

14.
基于K-均值聚类和凝聚聚类的离群点查找方法   总被引:1,自引:1,他引:1       下载免费PDF全文
离群点发现是数据挖掘研究的一个重要方面。根据数据流的特点,给出了一种基于K-均值聚类和凝聚聚类的离群点发现方法,先用K-均值聚类对数据流进行处理,生成中间聚类结果,然后用凝聚聚类对这些中间结果进行再次选择,最后找出可能存在的离群点。  相似文献   

15.
在数据密集型计算环境中,数据的海量、高维、分布存储等特点,为数据挖掘算法的设计与实现带来了新的挑战。基于 MapReduce模型提出网格技术与基于密度的方法相结合的离群点挖掘算法,该算法分为两步:Map阶段采用网格技术删除大量不可能成为离群点的正常数据,将代表点信息发送给主节点;Reduce阶段采用基于密度的聚类方法,通过改进其核心对象选取,可以挖掘任意形状的离群点。实验结果表明,在数据密集型计算环境中,该方法能有效的对离群点进行挖掘。  相似文献   

16.
离群点是与其他正常点属性不同的一类对象,其检测技术在各行业上均有维护数据纯度、保障业内安全等重要应用,现有算法大多是基于距离、密度等传统方法判断检测离群点.本算法给每个对象分配一个"孤立度",即该点相对其邻点的孤立程度,通过排序进行判定,比传统算法效率更高.在AP(affinity propagation)聚类算法的基础上进行改进与优化,提出能检测异常数据点的算法APO(outlier detection algorithm based on affinity propagation).通过加入孤立度模块并计算处理样本点的孤立信息,并引入放大因子,使其与正常点之间的差异更明显,通过增大算法对离群点的敏感性,提高算法的准确性.分别在模拟数据集和真实数据集上进行对比实验,结果表明:该算法与AP算法相比,对离群点的敏感性更加强烈,且本算法检测离群点的同时也能聚类,是其他检测算法所不具备的.  相似文献   

17.
传统的聚类算法是一种无监督的学习过程,聚类的精度受到相似性度量方式以及数据集中孤立点的影响,并且算法也没有很好的利用先验知识,无法体现用户的需求。因此提出了基于共享最近邻的孤立点检测及半监督聚类算法。该算法采用共享最近邻为相似度,根据数据点的最近邻居数目来判断是否为孤立点,并在删除孤立点的数据集上进行半监督聚类。在半监督聚类过程中加入了经过扩展的先验知识,同时根据图形分割原理对数据集进行聚类。文中使用真实的数据集进行仿真,其仿真结果表明,本文所提出的算法能有效的检测出孤立点,并具有很好的聚类效果。  相似文献   

18.
结合密度聚类和模糊聚类的特点,提出一种基于密度的模糊代表点聚类算法.首先利用密度对数据点成为候选聚类中心点的可能性进行处理,密度越高的点成为聚类中心点的可能性越大;然后利用模糊方法对聚类中心点进行确定;最后通过合并聚类中心点确定最终的聚类中心.所提出算法具有很好的自适应性,能够处理不同形状的聚类问题,无需提前规定聚类个数,能够自动确定真实存在的聚类中心点,可解释性好.通过结合不同聚类方法的优点,最终实现对数据的有效划分.此外,所提出的算法对于聚类数和初始化、处理不同形状的聚类问题以及应对异常值等方面具有较好的鲁棒性.通过在人工数据集和UCI真实数据集上进行实验,表明所提出算法具有较好的聚类性能和广泛的适用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号