首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
随着互联网的快速发展,只涉及用户和项目的传统个性化推荐已不能满足推荐要求的效率和准确率.因此,情景感知个性化推荐服务引起了广泛关注,成为新的研究热点.本文分析了情境的定义、情景感知个性化推荐模型,并提出了一种基于情境信息降低维度的关联规则推荐模型.最后,以视频网站的web日志为数据源,融合时间情境因素,实现了基于时间情境划分的关联规则推荐算法,并和传统推荐算法进行对比分析,实验证明,情境感知推荐算法具有更高的准确率和召回率.  相似文献   

2.
由于社交网络中人物与内容之间错综复杂的关系,如何合理地给用户推荐感兴趣的内容具有十分重要的意义。提出CCVR(Core user for Clustering interesting Vector for Recommend)算法。基于用户的兴趣矩阵,运用改进的K-means算法进行聚类从而推导类兴趣向量,由此预测用户对哪些内容标签感兴趣,从而形成推荐。实验结果证明CCVR算法具有良好的准确性。  相似文献   

3.
基于项目属性的用户聚类协同过滤推荐算法   总被引:1,自引:0,他引:1  
协同过滤推荐算法是个性化推荐服务系统的关键技术,由于项目空间上用户评分数据的极端稀疏性,传统推荐系统中的用户相似度量算法开销较大并且无法保证项目推荐精度.通过对共同感兴趣的项目属性的相似用户进行聚类,构建了不同项目评价的用户相似性,设计了一种优化的协同过滤推荐算法.实验结果表明,该算法能够有效避免由于数据稀疏性带来的弊端,提高了系统的推荐质量.  相似文献   

4.
思政教育可以体现中国特色社会主义本质要求,因此研究基于K-Means聚类的思政教育资源个性化推荐方法。首先,根据两组相邻用户之间的共同喜好,划分思政教育资源个性化推荐等级。其次,选择协同过滤算法归一化样本数据,计算相似度制定用户偏好,构建思政教育资源推荐模型。最后,基于K-Means聚类算法给定目标函数,建立个性化推荐流程,实现思政教育资源推荐,完成方法设计。实践表明,该方法既能够满足思政教育资源的匹配,又能够保证用户对思政教育资源的喜爱程度,具有实际的应用效果。  相似文献   

5.
个性化服务中基于用户聚类的协同过滤推荐   总被引:19,自引:0,他引:19  
协同过滤技术被成功地应用于个性化推荐系统中,但随着系统规模扩大,它的效能逐渐降低。针对此缺点,使用了基于用户聚类的协同过滤推荐,根据用户评分的相似性对用户聚类,在此基础上搜索目标用户的最近邻居,从而缩小用户的搜索范围。本文还提出将协同过滤推荐分为类内相似系数计算和产生推荐两个阶段,把相似系数的计算放在离线部分,减少在线推荐的计算量,提高实时响应速度。另对聚类算法初始聚类中心的选取也做了改进。  相似文献   

6.
随着移动设备的普及、同时大数据时代数据过载问题的日益严重,如何更准确地根据用户的兴趣及行为向用户推荐其可能感兴趣的应用软件成为亟待解决的问题.现有的推荐系统方法大多面临着推荐内容较为单一乏味等问题,且在推荐时没有将用户所处情境加以考虑,导致推荐效果欠佳.该文提出一种基于用户特征聚类联合情境特征的多维度应用推荐系统.经奇...  相似文献   

7.
针对当前移动餐饮个性化推荐存在的准确度差和自适应性差等问题,提出利用本体构建技术和情境感知技术来实现个性化推荐。对移动餐饮平台的情境要素进行了全面的分析,建立了基于情境感知的移动餐饮个性化推荐模型框架,构建了情境语义的两层本体模型,并介绍了推荐模型运行的基本工作流程,重点介绍了情境获取、情境推理、情境更新合成和规则匹配关键环节,以期提高个性化推荐服务的质量和效果。  相似文献   

8.
为了满足移动阅读用户在不同阅读情境中的服务需求,提高移动阅读平台的服务质量,文章将情境感知理论融入移动阅读个性化推荐服务中,对基于情境感知的移动阅读个性化推荐服务模式进行探析。首先阐述基于情境感知的移动阅读个性化推荐服务流程,然后构建基于情境感知的移动阅读个性化推荐服务模型,并详细介绍模型中的各个构成模块,最后对如何科学、有效地评估基于情境感知的移动阅读个性化推荐服务效果进行讨论,介绍三类推荐服务效果评估方式。  相似文献   

9.
张峻玮  杨洲 《计算机科学》2014,41(12):176-178
为了降低组用户推荐的计算时间,提出了一种改进的层次聚类协同过滤用户推荐算法。由于数据的稀疏性,传统的聚类方法在尝试划分用户群时效果不理想。考虑到传统聚类算法的聚类中心不变组内用户间相关度不高等问题,将用户进行聚类,然后按照分类计算出每个用户的推荐结果,在进行聚类的同时充分利用用户间的信息传递来增强组内用户的信息共享,最后将组内所有的用户的推荐结果进行聚合。最后仿真实验表明,本方法能够有效地提高推荐的准确度,比传统的协同过滤算法具有更高的执行效率。  相似文献   

10.
互联网技术的发展日新月异,Web数据是海量的,同时网络用户的浏览兴趣也是不断变换的。为了满足用户兴趣不断变换的需求,更好地实现个性化推荐,提出了一种新的Web用户会话实时聚类算法。算法分析验证了该算法可以提高聚类速度,能更好地满足用户的需求。  相似文献   

11.
商品的个性化推荐是电子商务个性化服务中非常重要的一个方面,而聚类协作过滤则是推荐系统中采用最为广泛的技术。在基于聚类协作过滤的商品个性化推荐中的聚类算法通常采用划分聚类,文章根据电子商务网站的特点,提出了用改进的Rock层次凝聚算法Improved-Rock实现基于购买商品类别相似性的用户聚类。模拟实验结果表明该算法的应用是有实际价值的。  相似文献   

12.
商品的个性化推荐是电子商务个性化服务中非常重要的一个方面,而聚类协作过滤则是推荐系统中采用最为广泛的技术。在基于聚类协作过滤的商品个性化推荐中的聚类算法通常采用划分聚类,文章根据电子商务网站的特点,提出了用改进的Rock层次凝聚算法Improved-Rock实现基于购买商品类别相似性的用户聚类。模拟实验结果表明该算法的应用是有实际价值的。  相似文献   

13.
杨墨  李炜  王晶 《计算机系统应用》2013,22(10):151-154
随着YouTube、Flickr和Last.fm等社会化网络的兴起,标签系统在日常生活中扮演着越来越重要的作用.为了给用户提供更优质的推荐,分析用户为不同资源打标签的行为就显得尤为重要.本文将主要的社区发现算法应用到标签系统中的聚类分析中,并比较它们在不同数据集上的表现,设计出针对标签系统的个性化推荐算法.实验结果表明,本文提出的算法能很好的发现不同用户的兴趣,提高推荐系统的质量.  相似文献   

14.
协同过滤为个性化推荐解决信息过载问题提供了方案,然而也存在着数据的稀疏性、可扩展性等影响推荐质量的关键问题.我们提出了一种基于奇异值分解(SVD)与模糊聚类的协同过滤推荐算法,通过引用物理学上狭义相对论中能量守恒的方法以保留总体特征值的数目,较为准确地确定降维维度,实现对原始数据的降维及其数据填充.另外,再运用模糊聚类的方法将相似用户进行聚类,从而达到减少邻居用户搜索范围的目的.在MovieLens与2013年百度电影推荐系统比赛等不同数据集上的实验结果表明,该算法能够提高推荐质量.  相似文献   

15.
针对推荐系统中用户的个性化需求,提出一种基于用户兴趣三维建模的个性化推荐算法.通过分析用户行为数据,从兴趣广度、兴趣深度和兴趣时效3个角度分析用户的兴趣构成,对用户兴趣进行三维建模,并在此基础上,逐步添加维度,设计用户之间兴趣相似度的三级计算方法.在真实推荐系统数据集上的实验结果表明,用户兴趣三维模型比一维模型、二维模型更能准确地表征用户兴趣,基于用户兴趣三维建模的个性化推荐算法能够提高个性化推荐的准确率.  相似文献   

16.
随着大数据技术的发展,信息化、智能化作战将成为现代战争的未来趋势,如何从浩瀚信息中获取有效信息是提高作战指挥效率的重要问题。面向战场信息共享平台,利用推荐系统可解决信息过载问题的优势,结合军事领域信息数据特点,构建军事平台的个性化推荐系统框架,然后基于该推荐系统,提出融合情景感知的推荐算法,以提高军事平台的推荐服务质量。  相似文献   

17.
新兴的基于活动的社交网络以活动为核心,结合线上关系与线下活动促进用户真实、有效的社交关系的形成,但过多的活动信息会使用户难以分辨和选择.结合上下文进行个性化同城活动推荐,是解决活动信息过载问题的一种有效手段.然而大部分现有的同城活动推荐算法都是从用户参与活动记录中间接统计用户对上下文信息的偏好,忽略了两者之间潜在的交叉影响关系,从而影响了推荐结果的有效性.为了解决用户参与活动偏好与上下文信息潜在交叉影响关系利用不足的问题,提出了一种基于协同上下文关系学习的同城活动推荐算法(colletive contextual relation learning,简称CCRL).首先,对用户参与活动记录和活动主办方、活动内容、活动地点、举办时间等相关上下文信息进行关系建模;然后,采用多关系贝叶斯个性化排序学习方法进行协同上下文关系学习及同城活动推荐. Meetup数据集上的实验结果表明,该算法在多项指标上均优于现有的主流活动推荐算法.  相似文献   

18.
个性化推荐系统是根据用户的爱好,给用户推荐符合用户兴趣的对象的一种高级商务智能平台.论文重点探讨基于用户的协同过滤算法,介绍其基本思想和工作流程,并通过高级语言C++来实现三种相似度计算方法,通过实验比较得出了最佳的计算方法,并设计实现了一个电子商务个性化推荐系统原型,对其他同类网站应用个性化推荐系统具有很好的参考价值.  相似文献   

19.
协同过滤算法在个性化推荐系统中应用广泛,为保证其在用户规模扩大的同时可以保持推荐的高效性和准确性,设计了一种基于PCA降维和二分K-means聚类的协同过滤推荐算法PK-CF。该算法为解决用户-项目评分矩阵极度稀疏造成的相似度计算误差的问题,采用主成分分析法对用户-项目评分矩阵进行降维,去除含信息量少的维度,只保留最能代表用户特征的维度;为解决协同过滤算法在系统规模庞大情况下的相似度计算时耗问题,通过在降维后的低维向量空间上进行二分K-means聚类来减小目标用户最近邻的搜索范围。在MovieLens数据集上对传统协同过滤算法、基于K-means聚类的协同过滤算法及PK-CF算法进行性能测试的结果表明:PK-CF算法不仅能有效地提高推荐结果的准确率与召回率,而且具有较高的时间效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号