首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Inside-out thylakoid membrane vesicles can be isolated by aqueous polymer two-phase partition of Yeda press-fragmented spinach chloroplasts (Andersson, B. and Akerlund, H.-E. (1978) Biochim. Biophys. Acta 503, 462-472). The mechanism for their formation has been investigated by studying the yield of inside-out vesicles after various treatments of the chloroplasts prior to fragmentation. No inside-out vesicles were isolated during phase partitioning if the chloroplasts had been destacked in a low-salt medium prior to the fragmentation. Only in those cases where the chloroplast lamellae had been stacked by cations of membrane-paired by acidic treatment did we get any yield of inside-out vesicles. Thus, the intrinsic properties of chloroplast thylakoids seem to be such that they seal into right-side out vesicles after disruption unless they are in an appressed state. This favours the following mechanism for the formation of inside-out thylakoids. After press treatment, a ruptured membrane still remains appressed with an adjacent membrane. Resealing of such an appressed membrane pair would result in an inside-out vesicle. If the compartmentation of chloroplast lamellae into appressed grana and unappressed stroma lamellae is preserved by cations before fragmentation, the inside-out vesicles are highly enriched in photosystem II. This indicates a granal origin which is consistent with the proposed model outlined. Inside-out vesicles possessing photosystem I and II properties in approximately equal proportions could be obtained by acid-induced membrane-pairing of chloroplasts which had been destacked and randomized prior to fragmentation. Since this new preparation of inside-out thylakoid vesicles also exposes components derived from the stroma lamellae it complements the previous preparation. It is suggested that fragmentation of paired membrane followed by phase partitioning should be a general method of obtaining inside-out vesicles from membranes of various biological sources.  相似文献   

2.
We have previously demonstrated (Armond, P. A., C. J. Arntzen, J.-M. Briantais, and C. Vernotte. 1976. Arch. Biochem. Biophys. 175:54-63; and Davis, D. J., P. A. Armond, E. L. Gross, and C. J. Arntzen. 1976. Arch. Biochem. Biophys. 175:64-70) that pea seedlings which were exposed to intermittent illumination contained incompletely developed chloroplasts. These plastids were photosynthetically competent, but did not contain grana. We now demonstrate that the incompletely developed plastids have a smaller photosynthetic unit size; this is primarily due to the absence of a major light-harvesting pigment-protein complex which is present in the mature membranes. Upon exposure of intermittent-light seedlings to continuous white light for periods up to 48 h, a ligh-harvesting chlorophyll-protein complex was inserted into the chloroplast membrane with a concomitant appearance of grana stacks and an increase in photosynthetic unit size. Plastid membranes from plants grown under intermediate light were examined by freeze-fracture electron microscopy. The membrane particles on both the outer (PF) and inner (EF) leaflets of the thylakoid membrane were found to be randomly distributed. The particle density of the PF fracture face was approx. four times that of the EF fracture face. While only small changes in particle density were observed during the greening process under continuous light, major changes in particle size were noted, particularly in the EF particles of stacked regions (EFs) of the chloroplast membrane. Both the changes in particle size and an observed aggregation of the EF particles into the newly stacked regions of the membrane were correlated with the insertion of light-harvesting pigment-protein into the membrane. Evidence is presented for identification of the EF particles as the morphological equivalent of a "complete" photosystem II complex, consisting of a phosochemically active "core" complex surrounded by discrete aggregates of the light-harvesting pigment protein. A model demonstrating the spatial relationships of photosystem I, photosystem II, and the light-harvesting complex in the chloroplast membrane is presented.  相似文献   

3.
Aquaporin (AQP) water channels are abundant in the brain and spinal cord, where AQP1 and AQP4 are believed to play major roles in water metabolism and osmoregulation. Immunocytochemical analysis of the brain recently revealed that AQP4 has a highly polarized distribution, with marked expression in astrocyte end-feet that surround capillaries and form the glia limitans; however, the structural organization of AQP4 has remained unknown. In freeze-fracture replicas, astrocyte end-feet contain abundant square arrays of intramembrane particles that parallel the distribution of AQP4. To determine whether astrocyte and ependymocyte square arrays contain AQP4, we employed immunogold labeling of SDS-washed freeze-fracture replicas and stereoscopic confirmation of tissue binding. Antibodies to AQP4 directly labeled approximately 33% of square arrays in astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Overall, 84% of labels were present beneath square arrays; 11% were beneath particle clusters that resembled square arrays that had been altered during fixation or cleaving; and 5% were beneath the much larger areas of glial plasma membrane that were devoid of square arrays. Based on this evidence that AQP4 is concentrated in glial square arrays, freeze-fracture methods may now provide biophysical insights regarding neuropathological states in which abnormal fluid shifts are accompanied by alterations in the aggregation state or the molecular architecture of square arrays.  相似文献   

4.
1. After incubation of bovine glomeruli with D-[U-14C]glucose, about 21% of the total radioactivity is found in lipid extracts of glomerular basement membranes. 2. The concentration of lipids in glomerular basement membranes (4.3% of dry wt.) is lower than in the residual glomerular particles (10.8% of dry wt.). The concentrations of neutral lipids (13.9%), phospholipids (46.7%) and cholesterol (37.9%) in the total lipid extract of the glomerular basement membranes, however, differ from those in the residual glomerular particles (15.6, 54.0 and 30.9% respectively). Though residual glomerular particles show a higher lipid content, the radioactivity in this fraction only amounts to 38% of that found in the glomerular basement membranes. 3. The specific radioactivity of total glomerular basement-membrane lipids (12 600 d.p.m./mg) is about 4 times as high as that of the glomerular basement membranes. The specific radioactivities of the individual lipid components, however, differ. The highest values are found for phosphatidylcholine and triacylglycerols. The largest proportion of the radioactivity is found in the glycerol of the glycerides. The radioactivity in the fatty acids is much less and does not differ significantly in the various classes of lipids. 4. G.1.c. of methyl esters of the fatty acids does not reveal a clear difference between the fatty acid compositions of glomerular basement membranes and residual glomerular particles. 5. Treatment of glomerular basement-membrane preparations with ultrasound, the generally used procedure for glomerular basement-membrane preparations, drastically decreases the lipid content of glomerular basement membranes. 6. It is concluded that lipids are associated with the basement membranes. Further, the comparatively high radioactive labelling suggests that glomerular basement-membrane lipids may be an interesting class of substances for further pathological studies.  相似文献   

5.
Chloroplasts and cyanobacteria contain genes encoding polypeptides homologous to some subunits of the mitochondrial respiratory NADH-ubiquinol oxidoreductase complex (NADH dehydrogenase). Nothing is known of the role of the NADH dehydrogenase complex in photosynthesis, respiration, or other functions in chloroplasts, and little is known about the specific roles of the perhaps 42 subunits of this complex in the mitochondrion. Inactivation of a gene for subunit 4 (ndhD-2, ndh4) of this complex in the cyanobacterium Synechocystis 6803 has no effect on photosynthesis, judging from the rate of photoautotrophic growth of mutant cells, but the mutant's respiratory rate is about 6 times greater than that of wild-type cells. Respiratory electron transport activity in cyanobacteria is associated both with photosynthetic thylakoid membranes and with the outer cytoplasmic membrane of the cell. Cytoplasmic membranes of mutant cells have much greater NADH-dependent cytochrome reductase activity than preparations from wild-type cells; this activity remains at wild-type levels in isolated thylakoid membranes. It is suggested that the 56.6-kD product of ndhD-2 is not essential for the activity of a cytoplasmic membrane-bound NADH dehydrogenase but that it regulates the rate of electron flow through the complex, establishing a link between this ndh gene and respiration. The activity of the molecularly distinct thylakoid-bound NADH dehydrogenase is apparently unaffected by the loss of ndhD-2.  相似文献   

6.
Human erythrocytes in the circulation undergo dynamic oxidative damage involving membrane lipid peroxidation and protein aggregation during aging. The present study was undertaken to determine the effect of n-3 fatty acid supplementation on lipid peroxidation and protein aggregation in the circulation and also the in vitro susceptibility of rat erythrocyte membranes to oxidative damage. Wistar male rats were fed a diet containing n-6 fatty acid-rich safflower oil or n-3 fatty acid-rich fish oil with an equal amount of vitamin E for 6 wk. n-3 Fatty acid content in erythrocyte membranes of rats fed fish oil was significantly higher than that of rats fed safflower oil. The degree of membrane lipid peroxidation and protein aggregation of rats fed fish oil was not significantly higher than that of rats fed safflower oil when the amounts of phospholipid hydroperoxides, thiobarbituric acid-reactive substances, and detergent-insoluble protein aggregates were measured. When isolated erythrocytes were oxidized under aerobic conditions in the presence of Fe(III), the degree of membrane lipid peroxidation of erythrocytes from rats fed fish oil was increased to a greater extent than that of rats fed safflower oil, whereas the degree of membrane protein aggregation of both groups was increased in a similar extent. Hence, n-3 fatty acid supplementation did not affect lipid peroxidation and protein aggregation in membranes of circulating rat erythrocytes, and the supplementation increased the susceptibility of isolated erythrocytes to lipid peroxidation, but not to protein aggregation, under the aerobic conditions. If a sufficient amount of vitamin E is supplied, n-3 fatty acid supplementation may give no undesirable oxidative effects on rat erythrocytes in the circulation.  相似文献   

7.
The cells of an L-form strain of Streptomyces hygroscopicus have been grown for 20 years without a cell wall. Their cytoplasmic membranes have high stability and an unusual structural polymorphism. To clarify the importance of the lipid components for these membrane properties, a comparative analysis has been carried out with purified membranes of L-form cells, of parent vegetative hyphal cells (N-form cells), and of protoplasts derived from the latter. The phospholipid classes and fatty acids were determined by thin-layer chromatography (TLC), two-dimensional TLC, high-performance liquid chromatography, gas chromatography, and mass spectrometry. The qualitative compositions of cardiolipin (CL), lyso-cardiolipin (LCL), phosphatidylethanolamine (PE1 and PE2), lyso-phosphatidylethanolamine (LPE), phosphatidylinositolmannoside (PIM), phosphatidic acid (PA), dilyso-cardiolipin-phosphatidylinositol (DLCL-PI), and the 13 main fatty acids were the same in the three membrane types. However, significant quantitative differences were observed in the L-form membrane. They consist of a three- to fourfold-higher content of total, extractable lipids, 20% more phospholipids, an increased content of CL and PIM, and a reduced amount of the component DLCL-PI. Furthermore, the L-form membrane is characterized by a higher content of branched anteiso 15:0 and anteiso 17:0 fatty acids compared to that of the membranes of the walled vegetative cells. These fatty acids have lower melting points than their straight and iso-branched counterparts and make the membrane more fluid. The phospholipid composition of the protoplast membrane differs quantitatively from that of the N form and the L form. Whereas the phospholipid classes are mostly similar to that of the N form, the fatty acid pattern tends to be closer to that of the L-form membrane. The membranes of both the L-form cells and the protoplasts need to be more fluid because of their spherical cell shape and higher degree of curvature compared with N-form membranes.  相似文献   

8.
Results of in vitro and genetic studies have provided evidence for four pathways by which proteins are targeted to the chloroplast thylakoid membrane. Although these pathways are initially engaged by distinct substrates and involve some distinct components, an unresolved issue has been whether multiple pathways converge on a common translocation pore in the membrane. A homologue of eubacterial SecY called cpSecY is localized to the thylakoid membrane. Since SecY is a component of a protein-translocating pore in bacteria, cpSecY likely plays an analogous role. To explore the role of cpSecY, we obtained maize mutants with transposon insertions in the corresponding gene. Null cpSecY mutants exhibit a severe loss of thylakoid membrane, differing in this regard from mutants lacking cpSecA. Therefore, cpSecY function is not limited to a translocation step downstream of cpSecA. The phenotype of cpSecY mutants is also much more pleiotropic than that of double mutants in which both the cpSecA- and DeltapH-dependent thylakoid-targeting pathways are disrupted. Therefore, cpSecY function is likely to extend beyond any role it might play in these targeting pathways. CpSecY mutants also exhibit a defect in chloroplast translation, revealing a link between chloroplast membrane biogenesis and chloroplast gene expression.  相似文献   

9.
Several studies suggest that aquaporin water channels can be identified in membranes by freeze-fracture electron microscopy. For this report, Chinese Hamster ovary cells were stably transfected with cDNAs encoding aquaporins 1-5. Measurement of the osmotic water permeability of the cells confirmed that functional protein was expressed and delivered to the plasma membrane. By freeze-fracture electron microscopy, a 20% increase in intramembrane particle (IMP) density was found in plasma membranes of cells expressing AQP2, 3 and 5, and a 100% increase was measured in AQP1-expressing cells, when compared to mock-transfected cells. On membranes of cells expressing AQP4, large aggregates of IMPs were organized into orthogonal arrays, which occupied 10-20% of the membrane surface. IMP aggregates were never seen in AQP2-transfected cells. Hexagonally packed IMP clusters were detected in approximately 5% of the membranes from AQP3-expressing cells. Particle size-distribution analysis of rotary shadowed IMPs showed a significant shift from 13. 5 (control cells) to 8.5 nm or less in AQP-expressing cells; size distribution analysis of unidirectionally shadowed IMPs also showed a significant change when compared to control. Some IMPs in AQP expressing cells had features consistent with the idea that aquaporins are assembled as tetramers. The results demonstrate that in transfected CHO cells, AQP transfection modifies the general appearance and number of IMPs on the plasma membrane, and show that only AQP4 assembles into well-defined IMP arrays.  相似文献   

10.
We describe the identification of the first immunophilin associated with the photosynthetic membrane of chloroplasts. This complex 40 kDa immunophilin, designated TLP40 (thylakoid lumen PPIase), located in the lumen of the thylakoids, was found to play a dual role in photosynthesis involving both biogenesis and intraorganelle signalling. It originates in a single-copy nuclear gene, is made as a precursor of 49.2 kDa with a bipartite lumenal targeting transit peptide, and is characterized by a structure including a cyclophilin-like C-terminal segment of 20 kDa, a predicted N-terminal leucine zipper and a potential phosphatase-binding domain. It can exist in different oligomeric conformations and attach to the inner membrane surface. It is confined predominantly to the non-appressed thylakoid regions, the site of protein integration into the photosynthetic membrane. The isolated protein possesses peptidyl-prolyl cis-trans isomerase protein folding activity characteristic of immunophilins, but is not inhibited by cyclosporin A. TLP40 also exerts an effect on dephosphorylation of several key proteins of photosystem II, probably as a constituent of a transmembrane signal transduction chain. This first evidence for a direct role of immunophilins in a photoautotrophic process suggests that light-mediated protein phosphorylation in photosynthetic membranes and the role of the thylakoid lumen are substantially more complex than anticipated.  相似文献   

11.
Properties of whole milk and milk fractions from cows fed a diet that gave a greatly increased proportion of unsaturated fatty acid residues (especially of linoleic acid) in the milk lipids were studied, and this milk (high-linoleic milk) was compared with milk from cows on a control diet (control milk). The milk fractions were isolated by high-speed centrifugation of whole milk or cream and were examined by chemical analysis and electron microscopy. During centrifugation the globules of milk fat were disrupted and the membranes (fat-globule 'ghosts') floated as a layer beneath the free lipid. Membrane proteins from the 2 sorts of milk gave the same electrophoretic pattern and the amino acid compositions were the same. Lipid analysis of the membrane fraction from high-linoleic milk showed the expected increase in the proportion of unsaturated fatty acid residues in the neutral lipids, but there was an unexpected decrease in the proportion of unsaturated residues in the membrane phospholipids. No differences were found between high-linoleic and control milk in the ultrastructure of the milk-fat globules or the isolated membranes.  相似文献   

12.
In muscle cells, excitation-contraction (e-c) coupling is mediated by "calcium release units," junctions between the sarcoplasmic reticulum (SR) and exterior membranes. Two proteins, which face each other, are known to functionally interact in those structures: the ryanodine receptors (RyRs), or SR calcium release channels, and the dihydropyridine receptors (DHPRs), or L-type calcium channels of exterior membranes. In skeletal muscle, DHPRs form tetrads, groups of four receptors, and tetrads are organized in arrays that face arrays of feet (or RyRs). Triadin is a protein of the SR located at the SR-exterior membrane junctions, whose role is not known. We have structurally characterized calcium release units in a skeletal muscle cell line (1B5) lacking Ry1R. Using immunohistochemistry and freeze-fracture electron microscopy, we find that DHPR and triadin are clustered in foci in differentiating 1B5 cells. Thin section electron microscopy reveals numerous SR-exterior membrane junctions lacking foot structures (dyspedic). These results suggest that components other than Ry1Rs are responsible for targeting DHPRs and triadin to junctional regions. However, DHPRs in 1B5 cells are not grouped into tetrads as in normal skeletal muscle cells suggesting that anchoring to Ry1Rs is necessary for positioning DHPRs into ordered arrays of tetrads. This hypothesis is confirmed by finding a "restoration of tetrads" in junctional domains of surface membranes after transfection of 1B5 cells with cDNA encoding for Ry1R.  相似文献   

13.
The pho1 mutant of Arabidopsis has been shown to respond to the phosphate deficiency in the leaves by decreasing the amount of phosphatidylglycerol (PG). PG is thought to be of crucial importance for the organization and function of the thylakoid membrane. This prompted us to ask what the consequences of the PG deficiency may be in the pho1 mutant when grown under low or high light. While in the wild-type, the lipid pattern was almost insensitive to changes in the growth light, PG was reduced to 45% under low light in the mutant, and it decreased further to 35% under high light. Concomitantly, sulfoquinovosyl diacylglycerol (SQDG) and to a lesser extent digalactosyl diacylglycerol (DGDG) increased. The SQDG increase correlated with increased amounts of the SQD1 protein, an indicator for an actively mediated process. Despite of alterations in the ultrastructure, mutant thylakoids showed virtually no effects on photosynthetic electron transfer, O2 evolution and excitation energy allocation to the reaction centers. Our results support the idea that PG deficiency can at least partially be compensated for by the anionic lipid SQDG and the not charged lipid DGDG. This seems to be an important strategy to maintain an optimal thylakoid lipid milieu for vital processes, such as photosynthesis, under a restricted phosphate availability.  相似文献   

14.
Surfactants carrying either a hydrocarbon or a fluorocarbon alkyl chain have been synthesized. The polar head was either tris(hydroxymethyl)acrylamidomethane (THAM), telomerized THAM, or a glycosylated THAM moiety. The aqueous solubility of some of these molecules was increased by oxidizing to a sulfoxide the thioether function that associates their hydrophobic and hydrophilic moieties. In all cases, the critical micellar concentration was principally determined by the length and chemical nature of the alkyl chain. The usefulness of these surfactants in handling integral membrane proteins in solution has been examined using as test materials chloroplast thylakoid membranes and the photosynthetic complex cytochrome b6f. In keeping with earlier observations in other systems, none of the fluorinated surfactants was able to solubilize thylakoid membranes. Transfer to a solution of fluorinated surfactant of b6f complexes that had been solubilized and purified in the presence of a classical detergent usually resulted in aggregation and precipitation of the protein, while most homologous molecules with hydrocarbon chains did keep the b6f complex soluble. Two of the fluorinated surfactants, however, proved able to maintain the b6f complex water-soluble, intact, and enzymatically active. Because of their limited affinity for lipid alkyl chains and other hydrocarbon surfaces, fluorinated surfactants appear as potentially interesting tools for the study of membrane proteins that do not stand well exposure to classical detergents.  相似文献   

15.
This paper presents experimental data on the determination of the thickness of thylakoid membranes by small-angle neutron scattering. The thylakoids were isolated from spinach chloroplasts. The partial volume of proteins and lipids in the "washed" and "unwashed" membranes was estimated. It is shown that the thickness of thylakoid membranes, measured with this techniques depends on the way the membranes were separated. When isolated thylakoids by the standard method, the membrane thickness amounted to 75 A but if the extracted thylakoids were additionally washed with the isolation medium, the measured thickness was 50 A. In this case a significant decrease in the protein partial volume of the membrane was observed. The obtained results make it possible to explain numerous data on X-ray and small-angle neutron scattering by thylakoid membranes of different origins, proceeding from the assumption that all these membranes have a unified structure and consist of a stable core with a thickness of about 50 A, and layers of peripheral, weakly bound proteins with a thickness which may depends on the nature of the object under investigation and extracting conditions.  相似文献   

16.
Oxygen transport in thylakoid membranes of spinach chloroplasts (Spinacia oleracea) has been studied by observing the collisions of molecular oxygen with spin labels, using line broadening electron paramagnetic resonance (EPR) spectroscopy. Stearic acid spin labels were used to probe the local oxygen diffusion-concentration product. The free radical moiety was located at various distances from the membrane surface, and collision rates were estimated from linewidths of the EPR spectra measured in the presence and absence of molecular oxygen. The profile of the local oxygen diffusion-concentration product across the membrane determined at 20 degrees C demonstrates that this product, at all membrane locations, is higher than the value measured in water. From the profile of the oxygen diffusion-concentration product, the membrane oxygen permeability coefficient has been estimated using the procedure developed earlier (W.K. Subczynski, J.S. Hyde, A. Kusumi, Proc. Natl. Acad. Sci. USA 86 (1989) 4474-4478). At 20 degrees C, the oxygen permeability coefficient for the lipid portion of the thylakoid membrane was found to be 39.5 cm s-1. This value is 20% higher than the oxygen permeability coefficient of a water layer of the same thickness as the thylakoid membrane. The high permeability coefficient implies that the oxygen concentration difference across the thylakoid membrane generated under the illumination of the leaf by saturating actinic light is negligible, smaller than 1 microM.  相似文献   

17.
Four groups of male weanling rats were fed during three months, diets different in the nature of fats and the activity of 5' nucleotidase and fatty acid composition of brain and liver microsomes were studied. Group A were fed a standard commercial diet, group B a fat free-diet and group C and D a fat free-diet, containing respectively 10% of peanut-rapeseed oil and 10% of salmon oil. In brain and liver microsomes, 5'-nucleotidase activity increased throughout the development for all diets (except for the fat-free diet). Slight differences were found in rats fed the peanut-rapeseed oil diet compared to controls estimated at the same time. However, in animals fed the fish-oil diet, 5' nucleotidase had the highest activity in both brain and liver microsomes. Marked changes occurred in the fatty acid patterns of brain and liver microsomes among the various groups. The greatest alterations were found in the liver microsomes. In brain and liver microsomal membranes the fat-free diet induced an increase in monounsaturated fatty acids, an synthesis of eicosatrienoic acid, and a decrease in (n-6) and (n-3) polyunsaturated fatty acids. Animals fed a peanut-rapeseed oil and control diet showed similar fatty acid patterns in liver and brain microsomes. However, when rats were fed a fish-oil diet, the liver microsomal membranes were highly enriched in eicosapentaenoic and docosahexaenoic acids, and simultaneously there was a decrease in arachidonic acid. These results suggest that manipulation of the lipid environment influences 5'-nucleotidase activity by the interaction of the enzyme with specific membrane lipids.  相似文献   

18.
Both physical exercise and ingestion of polyunsaturated fatty acids that play an essential role in free radical-mediated damages cause lipid peroxidation. The intake of specific fatty acids can modulate the membrane susceptibility to lipid peroxidation. Data confirmed that liver, skeletal muscle, and heart have different capabilities to adapt their membrane composition to dietary fatty acids, the heart being the most resistant to changes. Such specificity affects membrane hydroperoxide levels that depend on the type of dietary fats and the rate of fatty acid incorporation into the membrane. Sedentary rats fed a monounsaturated fatty acid-rich diet (virgin olive oil) showed a higher protection of their mitochondrial membranes against peroxidation than sedentary rats fed a polyunsaturated fatty acid-rich diet (sunflower oil). Rats subjected to training showed higher hydroperoxide contents than sedentary animals, and exhaustive effort enhanced the aforementioned results as well as in vitro peroxidation with a free radical inducer. This study suggests that peroxide levels first depend on tissue, then on diet and lastly on exercise, both in liver and muscle but not in heart. Finally, it appears that alpha-tocopherol is a less relevant protective agent against lipid peroxidation than monounsaturated fatty acids.  相似文献   

19.
Envelope- and stroma-free thylakoid membranes of Vicia faba chloroplasts were incubated with trypsin or pronase for several hours. The indigestible residue was analysed by polyacrylamide gel electrophoresis. Trypsinization resulted in a complete digestion of all proteins with the exception of the pigment-protein complexes as well as a polypeptide not yet characterized. Yet, as compared with untreated material, Complex II was found to have higher electrophoretic mobility. Electron-microscopic studies illustrate that the indigestible residue still has a preserved membrane structure. Disintegration of the thylakoid membranes by sodium dodecyl sulfate followed by trypsinization also resulted in the two complexes while all the other proteins were found to be digested. However, after removal of the lipids the protein moieties of the complexes proved to be easily digestible. From these results it is concluded that pigment-protein interaction may be an important factor in maintaining a conformation rather resistant to perturbants and proteases. In contrast to trypsin, pronase completely digested the polypeptides of the thylakoid membranes including the protein moieties of the pigment-protein complexes leaving an amorphous lipid mass. The results support the assumption that the complexes are necessary to maintain the membrane structure.  相似文献   

20.
The tegumentary syncytium of a Trematode is studied by transmission EM and freeze-fracture with the following results. (1) Infoldings of the basal plasma membrane suggest that transport of water and solutes occur through the tegument. (2) Heterocellular gap junctions are found between the tegumentary cell bodies and the parenchymal cells. Gap junctional particles, 8 nm in diameter, are visible on the P face of membrane and form an irregular pattern. (3) Orthogonal arrays of small particles (6 nm in diameter) are abundant on the P face of the tegument basal plasma membrane and on the cell necks connecting tegumentary cell bodies to the tegument. (4) Hemidesmosomal particles are found on the E face of the tegument basal plasma membrane. The significance of these structures with respect to tegumentery permeability and exchanges with parenchyma are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号