首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 796 毫秒
1.
剩余污泥转化为SCFAs及用于增强生物除磷的研究进展   总被引:1,自引:0,他引:1  
发酵城市污水处理厂的剩余污泥可产生易于生物利用的短链脂肪酸(SCFAs),针对某些城市污水处理厂进水中所含溶解性有机物不能满足生物法需求的情况,可采用投加污泥发酵液作为外碳源来解决.SCFAs是增强生物除磷(EBPR)中聚磷菌厌氧合成聚羟基烷酸(PHAs)的重要基质,其浓度与类型对除磷效果有重要影响.本丈就剩余污泥发酵产酸、SCFAs对EBPR的影响及剩余污泥发酵液用于EBPR的研究进行了综述.  相似文献   

2.
对改良的Carrousel氧化沟活性污泥的氧化还原电位(ORP)变化进行了研究,结果表明,在非严格厌氧状态下磷难以释放,同时ORP也不会降低。在外加有机物且厌氧的条件下,新鲜污泥的ORP会明显降低,一般可以达到-80~-150 mV,且存在显著的磷释放,ORP降低的程度与有机物的浓度和种类无明显关系。微生物活性降低后,外加挥发性脂肪酸,ORP不会显著降低,说明对于EBPR系统来说,ORP的高低取决于微生物厌氧代谢的速率。  相似文献   

3.
徐微  吕锡武 《化工学报》2012,63(2):618-625
污泥是典型的反硝化除磷工艺,在处理低碳源生活水方面,极具应用前景。目前有关双污泥工艺的试验研究成果较多,而在双污泥工艺相关数学模型方面研究报道较少。本文的研究目的为建立一种可模拟双污泥反应过程的数学模型。参照ASM2D等模型,对主要生化反应过程的动力学模型进行线性简化,并列出了各单元污染物的物料平衡方程组,成为双污泥工艺数学模型的核心。模型的输入量包括水水质、各反应器停留时间、厌氧池污泥浓度、硝化池污泥浓度、回流比、越流比。模型的动力学参数与化学计量学参数由一实验室双泥系统的稳定运行数据估计得出(英文摘要给出了各参数的具体值)。针对目前反硝化聚磷数学模型无法体现厌氧释磷对反硝化聚磷过程影响的问题,采用平均比污泥聚磷速率与缺氧池反应时间乘积来描述缺氧聚磷过程的线性简化模型,平均比污泥聚磷速率与厌氧释磷量及反应时间有关,因此可反映厌氧释磷过程对缺氧聚磷速率的影响。 可查比污泥反硝化聚磷速率表得出,该表反映了比污泥反硝化聚磷速率与比污泥厌氧释磷量及反应历时之间的关系,可由反硝化聚磷实验获得。在模型求解之前,因比污泥厌氧释磷量未知,所以 无法确定,故无法通过一次求解模型中的线性方程组得出模型的解,针对此种情况,采用试算法求解模型。模型通过一连续流实验室双泥系统验证,结果表明,模型对各污染物浓度及沿程变化规律的预测具有较高准确性,但模型中可能存在不同误差相抵的情况,仍需进一步验证或改进。  相似文献   

4.
影响添加反硝化聚磷菌的SBR脱氮除磷主要因素   总被引:2,自引:0,他引:2  
以添加反硝化聚磷菌株后获得稳定生物脱氮除磷效果的SBR装置为研究对象,探讨各种因素对其脱氮除磷效果的影响.结果表明,最适温度为25℃,系统出水COD、氨氮和磷的去除率分别达到90.3%、88.1%和96.2%;进水pH为7.0时,释磷率达到8.1 mg·L-1·h-1,系统脱氛除磷效果最好;系统最佳HRT为厌氧2 h,缺氧4 h;系统污泥龄为10 d时,系统污泥含量和性能正常,厌氧释磷能力较强,运行效果最好.  相似文献   

5.
厌氧释磷量和温度对反硝化聚磷的影响   总被引:7,自引:1,他引:6       下载免费PDF全文
史静  吕锡武 《化工学报》2010,61(1):166-171
为了提高双污泥系统的脱氮除磷效率,以反硝化除磷污泥为研究对象,采用静态试验进行对比研究,考察了厌氧释磷量和温度对缺氧反硝化聚磷的影响。结果表明:在试验范围内,随着厌氧释磷量的增加,反硝化聚磷量、净聚磷量和硝氮去除效率增加,聚磷量与释磷量之比基本不变。在8、16、28℃三种情况下,均在约260min时结束反硝化聚磷,低温下反硝化聚磷效果显著下降。在各试验条件下,NO-3-N去除量与PO34--P去除量均呈良好的线性关系,系数为1.002~1.044,体现了系统中污泥的固有特性。  相似文献   

6.
通过静态试验考察除磷菌的厌氧释磷和好氧吸磷情况。在厌氧状态、在低有机负荷率的条件下,污泥释磷的速率随有机负荷率的升高而增加,但当有机负荷率超过一临界数值0.12gSCOD/gMLSS后,有机负荷率不再成为释磷菌厌氧释磷的限制性因素。此外,试验考察了硝态氮的存在对厌氧释磷和后续好氧吸磷的影响,发现硝态氮的存在不利于除磷菌的厌氧释磷并从而限制了在后续好氧状态下的吸磷效果。在上述试验的基础上,采用厌氧工艺与MBP,联用处理生活污水来强化生物除磷效果,在静态试验的基础上选定了各个工段的工艺运行参数,并在此条件下进行了为期6个月的连续性试验,发现系统对COD、TP、SS、NH3-N和TN的平均去除率分别为92.50%、84.25%、100%、94.09%和85.33%。  相似文献   

7.
采用序批式活性污泥法进行污水处理试验,考察电子受体的浓度和种类、MLSS对反硝化聚磷污泥脱氮除磷效果的影响。结果表明硝酸盐浓度的提高有利于除磷,但过高的硝酸盐浓度(40 mg/L),会导致脱氮效果降低,进而影响下一周期的厌氧释磷效果;在较低的亚硝酸盐浓度下(5 mg/L),有少量摄磷;当亚硝酸盐浓度大于20 mg/L时,对反硝化除磷有明显的抑制作用;随着MLSS增加,厌氧释磷量和缺氧摄磷量均增加;单位MLSS释磷量和单位MLSS摄磷量均与MLSS变化趋势相反;当MLSS大于11.3 g/L时,MLSS的增加对厌氧释磷量和缺氧摄磷量影响不大。  相似文献   

8.
张佩兰  荣宏伟  张可方  刘涛  曹勇锋 《广东化工》2011,38(1):118-119,124
通过厌氧培养基试验,在厌氧条件下,考察始末总磷的浓度,研究了不同泥源、不同磷源、不同起始磷浓度对厌氧除磷的影响.试验研究表明在厌氧35℃避光培养条件下,以猪粪、鸡粪、具有短程同步硝化反硝化耦合除磷的污泥、SBR污泥、EGSB厌氧污泥、ASBR污泥、SBR污泥和具有同步脱氮生物化学除磷的污泥为泥源的培养基试验中,EGSB...  相似文献   

9.
强化生物除磷(EBPR)认为废水中的磷主要通过聚磷菌(PAOs)在厌氧/好氧交替的条件下被微生物富集,最终通过将好氧末端的富磷剩余污泥排出系统从而达到除磷的目的。然而,近年来的研究揭示污泥中的胞外聚合物(EPS)也聚集了一定数量的磷,表明EPS在EBPR中的作用不可忽视。结合国内外研究进展,从传统生物除磷理论及其局限性,EPS的组成、EPS中磷的形态与含量及其动态变化等方面对其在生物除磷中发挥的作用进行总结,以期对未来的胞外聚合物研究提供重要参考。  相似文献   

10.
探究了新污染物利巴韦林(RBV)对强化生物除磷(EBPR)的影响,构建了强化生物除磷系统,分析了RBV浓度对EBPR的影响行为,并揭示了相关作用机制。结果证实RBV对EBPR的影响具有剂量依赖性,低于0.05 mg/L RBV对EBPR影响不明显,而超过0.1 mg/L RBV降低了除磷性能,在3.0 mg/L RBV组别内,COD和溶解性磷酸盐(SOP)去除效率分别下降至80.2%~84.1%和71.3%~75.6%。高浓度RBV降低了污泥浓度及有机质占比。短期内,高浓度RBV促进了胞外聚合物的分泌,但长期暴露发下RBV降低了EPS含量并主要降低了蛋白质和多糖含量。RBV能降低EBPR系统内胞内聚合物聚羟基脂肪酸酯(PHA)含量,进而后续产能不足降低除磷效率,但高浓度RBV刺激了糖原质的代谢。酶活性分析表明高浓度RBV降低了多聚磷酸盐激酶(PPK)和外切聚磷酸酶(PPX)的活性。研究结果为EBPR处理含RBV的废水提供一定的数据支撑和理论依据。  相似文献   

11.
城市污水自养脱氮系统中有机物与磷的回收   总被引:2,自引:0,他引:2       下载免费PDF全文
厌氧氨氧化的发现使开发低能耗城市污水处理技术成为可能,可通过生物吸附实现污水能源与资源的回收。强化除磷系统污泥龄(SRT)仅为2 d,系统抗冲击性强,污泥沉降性良好,污泥体积指数(SVI)低于50,可为自养脱氮系统提供稳定的进水,但系统污泥碳含量仅为37%。将反应器内好氧水力停留时间(HRT)降至 40 min后,实现有机物去除序批式反应器(SBR)的稳定运行,厌氧段COD去除率占总COD去除率的93.8%,这表明系统对有机物的去除主要为生物吸附作用,同时污泥碳含量提升至48%。由于异养菌对有机物的消耗利用与除磷菌的吸磷过程同时进行,若试验废水C/P比较低,可降低系统水力停留时间、提升碳的回收率并辅助少量的化学除磷手段,对系统厌氧搅拌时间、曝气时间及污泥龄进行优化,从而实现C与P的高效回收。  相似文献   

12.
采用厌氧/好氧和厌氧/缺氧两阶段方法培养反硝化聚磷菌,研究了第一阶段系统的除磷性能。结果表明,稳定运行的强化生物除磷系统,具有良好的除磷性能,出水磷的质量浓度小于0.5 mg/L,除磷率大于93%。通过厌氧/好氧交替方式运行,反硝化聚磷菌占聚磷菌的比例约为21.2%。缺氧段硝酸盐的消耗量与磷的摄取量成线性关系,缺氧吸磷速率约为好氧吸磷速率的49.3%。  相似文献   

13.
To investigate the characteristics and metabolic mechanism of short-cut denitrifying phosphorus-removing bacteria (SDPB) that are capable of enhanced biological phosphorus removal (EBPR) using nitrite as an electron acceptor, an aerobic/anoxic sequencing batch reactor was operated under three phases. An SDPB-strain YC was screened after the sludge enrichment and was identified by morphological, physiological, biochemical properties and 16S rDNA gene sequence analysis. Denitrifying phosphorus-removing experiments were conducted to study anaerobic and anoxic metabolic mechanisms by analyzing the changes of chemical oxygen demand (COD), phosphate, nitrite, poly-β-hydroxybutyrate (PHB), and glycogen. The results show that strain YC is a non-fermentative SDPB similar to Paracoccus denitrificans. As a kind of non-fermentative bacteria, the energy of strain YC was mainly generated from phosphorus release (96.2%) under anaerobic conditions with 0.32 mg P per mg synthesized PHB. Under anoxic conditions, strain YC accumulated 0.45 mg P per mg degraded PHB, which produced most of energy for phosphate accumulation (91.3%) and a little for glycogen synthesis (8.7%). This metabolic mechanism of strain YC is different from that of traditional phosphorus-accumulating organisms (PAOs). It is also found that PHB, a kind of intracellular polymer, plays a very important role in denitrifying and accumulating phosphorus by supplying sufficient energy for phosphorous accumulation and carbon sources for denitrification. Therefore, monitoring ΔP/ΔPHB and? ΔNO2--N/ΔPHB is more necessary than monitoring ΔP/ΔCOD,?ΔNO2--N/ΔCOD, or ΔNO2--N.  相似文献   

14.
化学强化生物除磷工艺及设计   总被引:3,自引:0,他引:3  
本文介绍了一种新的化学强化生物除磷工艺及其设计实例,与Phostrip侧流除磷工艺相比,其工艺优势在于所有污泥均经释磷和厌氧选择处理,通过化学沉积释放的磷,从而消除了在污泥处置过程中产生的磷释放回到污水处理系统的问题;所有回流污泥经厌氧选择处理,含有较高浓度聚磷菌类微生物,从而具有较高的除磷效率。  相似文献   

15.
不同碳源类型对生物除磷过程释放磷的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
侯红勋  王淑莹  闫骏  彭永臻 《化工学报》2007,58(8):2081-2086
厌氧释放磷是生物除磷的重要部分,释放磷不充分是生物除磷不稳定的主要原因。为了研究碳源种类对厌氧生物除磷的影响,以A2/O氧化沟工艺好氧末端活性污泥为研究对象,投加乙酸钠、丙酸钠、葡萄糖、甲醇和乙醇等碳源,在厌氧和缺氧状态下进行释放磷试验研究。结果表明:(1)在厌氧条件下,聚磷菌(PAOs)以乙酸钠或丙酸钠为碳源释放磷速率很快,120 min平均比释放磷速率分别为290.5和236.7 mg P·(g VSS)-1·d-1;PAOs利用葡萄糖、乙醇和甲醇释放磷速率较低,比释放磷速率分别为49.4、38.8和8.91 mg P·(g VSS)-1·d-1;(2)在缺氧条件下,PAOs以乙酸钠或丙酸钠为碳源释放磷速率与厌氧状态下释放磷速率相差不大,而其他3种碳源作用下,PAOs并不释放磷;(3)初始NO-3过高时,乙酸钠作为碳源,PAOs在释放磷结束后利用NO-3作为电子受体进行反硝化吸收磷。  相似文献   

16.
The interaction between enhanced biological phosphorus removal (EPBR) and biological nitrogen removal may result in EBPR failure in full‐scale wastewater treatment plants (WWTPs). This work studies one of the common causes of this failure: the presence of nitrate in the anaerobic phase, which may act as an inhibitor for polyphosphate accumulating organisms (PAO) activity or may activate the competition between PAO and denitrifying bacteria for the carbon source. Several batch experiments were performed with different carbon sources (acetic acid, propionic acid and sucrose) at different nitrate concentrations using PAO‐enriched sludge from two different pilot plants: an anaerobic/aerobic sequential batch reactor (SBR) and an anaerobic/anoxic/aerobic (A2/O) continuous plant. The results imply that the operational conditions of the A2/O pilot plant selected a PAO population capable of i) coexisting with nitrate without an inhibitory effect and ii) outcompeting denitrifying bacteria for the carbon source, in contrast to the SBR pilot plant where nitrate had an inhibitory effect on EBPR. Copyright © 2012 Society of Chemical Industry  相似文献   

17.
好氧颗粒是一种大型的生物聚集体,内部结构紧凑,可用于高效的废水处理。通过好氧颗粒化工艺的发展、颗粒化机理、强化生物除磷(enhanced biological phosphorus removal,EBPR)系统中颗粒污泥形成研究、颗粒污泥菌群结构研究和颗粒稳定性等方面进行了新的综述。  相似文献   

18.
采用某污水处理厂A2/O工艺中的活性污泥为种泥,以模拟生活污水为对象,考察了交替式厌/缺氧-好氧双膜反硝化除磷工艺的启动与运行特性,并采用高通量测试技术分析系统除磷污泥的菌群结构。通过60天的启动试验,系统内反硝化聚磷菌占聚磷菌总数的比例由21.3%提高到94.4%,出水磷在0.6mg/L左右。通过逐步增加进水氨氮的方法运行2个月,系统的脱氮除磷效果稳定。在进水P浓度为6.4mg/L,保持进水N/P比为8.8,交替厌/缺氧-好氧双膜反硝化除磷工艺效能最优,可达0.12kgN/(m3?d)和0.018kgP/(m3?d),出水总磷(TP)0.8mg/L,总氮(TN)12mg/L,出水COD、NH3-N和TN达到国家综合排放标准GB18918-2002一级A排放标准。周期试验中,pH值、氧化还原电位(oxidation-reduction potential,ORP值)均可作为厌氧释磷的控制参数,ORP也可指示缺氧吸磷的终点。典型周期内硝酸盐、亚硝酸盐的消耗量与磷的吸收量基本呈线性关系。系统内污泥多样性约为种泥的0.5倍,在“门”、“属”分类级别上分别以ProteobacteriaXanthomonadales-nobank为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号