首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This paper deals with the synthesis, characterization, thermal properties and thermal reliability of a series of stearic acid esters as a novel solid–liquid phase change material (PCM) for thermal energy storage. The ester compounds were synthesized via the reaction of stearic acid with n-butyl alcohol, isopropyl alcohol and glycerol and characterized by Fourier transform infrared spectroscopy (FT-IR) and 1H Nuclear Magnetic Resonance (1H NMR) techniques. Thermal properties of the esters were measured by differential scanning calorimeter (DSC) method. DSC results indicated that the melting temperatures and latent heats of the synthesized PCMs are in the range of 23–63 °C and 121–149 J/g, respectively. The thermal cycling test including 1000 cycling was conducted to determine the thermal reliability of the synthesized PCMs. The thermal conductivities of the PCMs were also increased by adding 5 wt.% EG into the esters. Based on the results, it is concluded that the synthesized esters as novel PCM have significant energy storage potential due to their satisfactory thermal properties, good thermal reliability and thermal conductivities.  相似文献   

2.
Nanodiamond (ND)/poly (lactic acid) (PLA) nanocomposites with potential for biological and biomedical applications were prepared by using melting compound methods. By means of transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analyses (TGA), Dynamic mechanical analyses (DMA), Differential scanning calorimetry (DSC) and Tensile test, the ND/PLA nanocomposites were investigated, and thus the effect of ND on the structural, thermal and mechanical properties of polymer matrix was demonstrated for the first time. Experimental results showed that the mechanical properties and thermal stability of PLA matrix were significantly improved, as ND was incorporated into the PLA matrix. For example, the storage modulus (E′) of 3 wt% ND/PLA nanocomposites was 0.7 GPa at 130 °C which was 75% higher than that of neat PLA, and the initial thermal decomposition was delayed 10.1 °C for 1 wt% ND/PLA nanocomposites compared with the neat PLA. These improvements could be ascribed to the outstanding physical properties of ND, homogeneous dispersion of ND nanoclusters, unique ND bridge morphology and good adhesion between PLA matrix and ND in the ND/PLA nanocomposites.  相似文献   

3.
Two kinds of carbon aerogels, graphene aerogels (GA) and carbon nanotubes-graphene aerogels (CGA), were prepared by modified hydrothermal method. The form-stable phase change materials (PCMs) were fabricated by adsorbing paraffin into carbon aerogels. Morphology, structure, form stability and thermal property were characterized by scanning electron microscope (SEM), in situ X-ray diffraction (in situ XRD) and differential scanning calorimeter (DSC). The results showed that GA presented wrinkled surface textures with curling edges, and carbon nanotubes (CNTs) were interspersed or attached to GA sheets. The phase transition temperature and the phase change enthalpy of the GA/paraffin PCM composite were 48.7 °C and 223.2 J/g, respectively. Thermal and mechanical properties of PCM composites achieved a qualitative leap with the adding of carbon aerogels. The PCM composites had a thermal conductivity of about 2.182 W/m K at the carbon aerogels loading fraction of 2 wt%. The form-stable PCM composites with high thermal conductivity and high enthalpy could be promising for thermal energy storage applications in construction field.  相似文献   

4.
A series of polystyrene-graft-PEG6000 copolymers were synthesized as new kinds of polymeric solid–solid phase change materials (SSPCMs). The synthesized SSPCMs storage latent heat as the soft segments PEG6000 of the copolymers transform from crystalline phase to amorphous phase and therefore they can keep its solid state during the phase transition processing. The graft copolymerization reaction between polystyrene and PEG was verified by Fourier transform infrared (FT-IR) and 1H NMR spectroscopy techniques. The morphology of the synthesized SSPCMs was characterized by polarization optical microscopy (POM). Thermal energy storage properties, thermal reliability and thermal stability of the synthesized SSPCMs were investigated by differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis methods. The DSC results showed that the synthesized SSPCMs had typical solid–solid phase transition temperatures in the range of 55–58 °C and high latent heat enthalpy in the range of 116–174 J g−1. The TG analysis findings showed that the synthesized SSPCMs had high thermal durability above their working temperatures. Also, thermal conductivity measurements indicated that the synthesized PCMs had higher thermal conductivity compared to that of polystyrene. The synthesized polystyrene-graft-PEG6000 copolymers as new kinds of SSPCMs could be used for thermal energy storage.  相似文献   

5.
In this study, a series of shape-stabilized phase-change materials (PCMs) of camphene/stearic acid (CS) were prepared and their thermal properties were measured by differential scanning calorimetry. The results indicated that the mixture consisting of 60 mass% camphene and 40 mass% stearic acid is the most favorable as a PCM, in terms of the phase-change temperature and latent heat. Thereafter, the CS was absorbed in fly ash, pyroclastic, barite, and marble powder, which acts as a supporting material, to prepare four kinds of composite-based PCMs. DSC, FT-IR, and scanning electron microscopy measurements were made to investigate the structures and properties of the PCMs. DSC results showed that the latent heats of melting and freezing of the composite PCMs were sharply decreased. Morphology and structural characterization revealed that, in form-stable PCMs, the dispersion of the supporting materials in the camphene/stearic acid matrix is homogeneous and there is no chemical interaction between the CS and composites. The composite PCMs showed excellent thermal stabilities and reliabilities, when their phase-change temperatures were concerned. These indicate that the prepared composite-based PCMs are suitable for thermal energy storage because of their applicable temperature range, thermal reliability, and chemical stability.  相似文献   

6.
《材料科学技术学报》2019,35(5):939-945
In this study, series of novel composite phase change materials (PCMs) were prepared through vacuum impregnation by using meso-porous carbon as a supporting matrix and n-octadcane as PCMs. The meso-porous carbon material was prepared through one-pot co-assembly method, using resorcinol and formaldehyde as carbon precursor, tetraethoxysilane as silica sources and triblock copolymer F127 as a template. And the phase behaviors of n-octadcane confined in the nano-porous structure of the meso-porous carbon were further investigated. Fourier transform-infrared spectroscopy spectra show that n-octadecane was effectively encapsulated in the porous structure of mesoporous carbon and the composite PCMs were successfully prepared. Differential scanning calorimetry results confirm that the composite PCMs possess a good phase change behavior, fast thermal-response rate and excellent thermal cycling stability. In addition, the composite PCMs possess expected heat storage and heat release properties. All these results demonstrate that the composite PCMs possess good comprehensive property so that they can be used widely in energy storage systems.  相似文献   

7.

Abstract  

The thermal stability up to 800 °C of a nanocrystalline (NC) Ni (mean grain size ~25 nm) with ~4 wt% Al dispersed in the form of ~160-nm-sized particles, which was fabricated by co-electrodeposition from a nickel sulfate bath, has been investigated using differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results showed that microstructural evolution of the composite is temperature dependent, i.e., normal grain growth of the NC Ni, ~0.6 wt% Al solution into the Ni matrix and direct reaction between Al and Ni to form Ni3Al precipitates occurred at ~290, ~325 and ~575 °C, respectively. The distribution of Al in Ni matrix with temperature is fully discussed.  相似文献   

8.
In order to identify the validity of fabricating microencapsulated phase change material by ultraviolet irradiation-initiated method, the paraffin wax/polymethyl methacrylate microcapsules were prepared. The structural characteristics and thermal properties of the microcapsules were also determined by various techniques. The results of differential scanning calorimetry analyses indicate that the melting and freezing temperatures and latent heats of the microcapsules are 55.8 °C, 50.1 °C and 106.9 J g−1, 112.3 J g−1, respectively. Morphology and chemical characteristic analysis indicate that the spherical microcapsules were formed with average diameter of 0.21 μm and maximum microencapsulation ratio of 66 wt.% without leakage of core materials. The results of accelerated thermal cyclic test show that the microcapsules have good thermal reliability and chemical stability although they were subjected 3000 melting/freezing cycles. Based on all these results, it can be concluded that the microencapsulated paraffin composites have good potential for thermal energy storage purposes and ultraviolet irradiation-initiated method is a prominent candidate for preparing microencapsulated PCMs.  相似文献   

9.
This paper describes the thermal and mechanical properties of nanocomposites based on polylactic acid (PLA) and microfibrillated cellulose (MFC). The primary objective of this study was to improve the storage modulus of PLA at a high temperature. MFC and PLA were mixed in an organic solvent with various fiber contents up to 20 wt%, followed by drying, kneading and hot pressing into sheets. The nanocomposites were prepared in two different states, fully amorphous and crystallized. Differential scanning calorimetry (DSC) measurements revealed that the presence of MFC accelerates the crystallization of PLA. The tensile modulus and strength of neat PLA were improved with an increase of MFC content in both amorphous and crystallized states. The addition of 20 wt% of MFC in PLA improved the storage modulus of crystallized PLA at a high temperature (120 °C) from 293 MPa to 1034 MPa.  相似文献   

10.
《Composites Science and Technology》2007,67(11-12):2535-2544
The goal of this work was to produce nanocomposites based on poly(lactic acid) (PLA) and cellulose nanowhiskers (CNW). The CNW were treated with either tert-butanol or a surfactant in order to find a system that would show flow birefringence in chloroform. The nanocomposites were prepared by incorporating 5 wt% of the different CNW into a PLA matrix using solution casting. Field emission scanning electron microscopy showed that untreated whiskers formed flakes, while tert-butanol treated whiskers formed loose networks during freeze drying. The surfactant treated whiskers showed flow birefringence in chloroform and transmission electron microscopy showed that these whiskers produced a well dispersed nanocomposite. Thermogravimetric analysis indicated that both whiskers and composite materials were thermally stable in the region between 25 °C and 220 °C. The dynamic mechanical thermal analysis showed that both the untreated and the tert-butanol treated whiskers were able to improve the storage modulus of PLA at higher temperatures and a 20 °C shift in the tan δ peak was recorded for the tert-butanol treated whiskers.  相似文献   

11.
以聚乙二醇(PEG)作为相变组分,以高导热的膨胀石墨(EG)和富合羟基的剑麻纤维素(CSF)作为相变支撑组分,分别利用自制的超声辅助真空设备进行动态灌注或机械搅拌进行熔融共混制备了不同PEG用量的定形相变储能材料(PCMs).采用扫描电子显微镜、高分辨率光学相机、差示扫描量热仪、Hot disk-导热仪、热重分析仪等技术测试了PEG基复合PCMs的微观形貌、定形性、储热性能、导热率及稳定性.结果表明,新颖的动态灌注法制备的PEG基复合相变材料呈现出更致密的微观形态,更好的储热性能和更高的导热率及热稳定性.同时,实验发现由于CSF大量的极性羟基和多孔隙结构,当CSF质量分数为30%,EG质量分数为1%时,复合材料表现出极好的定形效果.  相似文献   

12.
The objective of this study is to explore the potential of layered zinc hydroxide nitrate modified with sodium benzoate as nanoparticle in thermoplastic polyester elastomer (TPEE). The organically modified zinc hydroxide nitrate was compounded with TPEE using solution blending method. The nanocomposite structure was characterized by means of X-ray diffraction and transmission electron microscopy. The results showed that the nanoparticle was homogenously dispersed in TPEE matrix, and partially exfoliated structure was formed. The thermal behavior, mechanical and thermal combustion properties of the novel nanocomposite were studied respectively through differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA) and microscale combustion calorimeter (MCC). For the nanocomposite containing 7 wt% nanoparticle, the crystallization temperature evaluated by DSC was increased by 10 °C. The storage modulus at −95 °C measured by DMA was improved by around 26%. The heat release capacity (an indicator of a material fire hazard) from MCC testing was reduced by about 56% (compared to the results of neat TPEE).  相似文献   

13.
Form-stable palmitic acid (PA)/active aluminum oxide composites as phase change materials were prepared by adsorbing liquid palmitic acid into active aluminum oxide. In the composites, the palmitic acid was used as latent heat storage materials, and the active aluminum oxide was used as supporting material. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine the chemical structure, crystalloid phase and microstructure of the composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetry analyzer (TGA). The FT-IR analyses results indicated that there is no chemical interaction between the palmitic acid and active aluminum oxide. The SEM results showed that the palmitic acid was well adsorbed into porous network of the active aluminum oxide. The DSC results indicated that the composites melt at 60.25 °C with a latent heat of 84.48 kJ kg−1 and solidify at 56.86 °C with a latent heat of 78.79 kJ kg−1 when the mass ratio of the PA to active aluminum oxide is 0.9:1. Compared with that of the PA, the melting and solidifying time of the composites CPCM5 was reduced by 20.6% and 21.4% because of the increased heat transfer rate through EG addition. The TGA results showed that the active aluminum oxide can improve the thermal stability of the composites.  相似文献   

14.
We have successfully synthesized and pelletized metallocene-catalyzed cycloolefin copolymers (mCOCs). Furthermore, their thermal oxidation, dynamic mechanical and rheological properties have also been investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and capillary rheometer, respectively. Their decomposition temperature (Td), glass transition temperature (Tg), and maximum damping (tanδ) are 450 °C, 203 °C and 2.6, respectively. The thermal oxidation for lab-made mCOC results from free-radical-induced reaction, causing discoloration, and its b* value (CIE LAB system) is 29.67. With 1,2-bis(3,5-di-tert-butyl-4-hydroxyhydro-cinnamoyl)hydrazine as an antioxidant, its b* value can effectively decrease and reach − 0.48. Experimental results reveal it is a tough and flexible polymer for a variety of applications since it possesses excellent thermal stability and mechanical properties.  相似文献   

15.
The present study deals with the properties of polycarbonate (PC)/clay nanocomposites prepared through melt and solution blending at two different clay loadings (0.5 phr and 1 phr) with preserved optical transparency of PC. The organoclay was prepared by exchanging the Na+ ions presented in the clay galleries of Na-MMT with butyltriphenylphosphonium (BuTPP+) ions, and denoted as BuTPP-MMT. The outstanding thermal stability of the BuTPP-MMT (∼1.44 wt% loss at 280 °C, after 20 min), concomitant with the increase in gallery height from 1.24 nm to 1.83 nm, proved its potentiality as nanofiller for melt-blending with PC. The X-ray diffraction analysis (XRD) revealed the destruction of the ordered geometry of aluminosilicate layers in the nanocomposites. However, from direct visualization through transmission electron microscopy, a discernible amount of clay was found to be localised in PC matrix in the 1 phr clay loaded nanocomposites (TEM). The differential scanning calorimetric (DSC) study revealed a nominal increase in glass transition temperature (Tg) of the PC in the nanocomposites. The thermal stability of the nanocomposites was increased with increase in clay loading. The nanocomposites possessed improved tensile strength and modulus than that of the virgin PC and the properties were related to the amount of clay loading and degree of clay dispersion. The dynamic mechanical analysis (DMA) revealed that the storage modulus increased in both the glassy and rubbery region with increase in clay loadings in the nanocomposites. Moreover, the optical transparency of the PC was retained in the PC/clay nanocomposites without development of any colour in the nanocomposites.  相似文献   

16.
Hybrid nanocomposites fabricated based on an optimized physical and chemical properties modified polypropylene (PP)/polypropylene grafted maleic anhydride (PP-g-MA) with varied concentrations (1–7 wt% at a step of 2 wt%) of organoclay, montmorillonite (MMT). The morphology of the nanocomposites was studied by scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). It was found that partly intercalated and partly exfoliated structure (intercalated–exfoliated structures) existed in the system. The degree of exfoliation is a key factor to determine the reinforcement efficiency. The ratio of exfoliation to intercalation plays an important role in determining the properties of PP nanocomposites and only completely exfoliated silicate layers can significantly improve the properties. PP hybrid nanocomposites showed good thermal stability in the thermogravimetric analysis (TGA). Introduction of ∼3% MMT in the nanocomposites increased the onset temperature of degradation by 27.5 °C compared to that of pure PP, while the 5 wt% MMT resulted the maximum hardness in these nanocomposites. The solvent resistance of PP hybrid nanocomposites slightly increased with increasing the clay content.  相似文献   

17.
The hybrids of styrene-butadiene-styrene tri-block copolymer (SBS) and amorphous poly(dl-lactic acid) (dl-PLA) are found to exhibit shape memory effects, which gives an example of a dual-domain shape memory system consisting of an elastic domain and a thermo-switch domain. The dual-domain manner in this hybrid is studied by means of differential scanning calorimetry (DSC) and scanning electron microscope (SEM). Subsequently, the tensile test clarifies the interactions of the two domains on shape memory effects. As an elastic domain, SBS offers good shape recovery when its content exceeds 50 wt%. As a thermo-switch domain, dl-PLA triggers the shape memory effect at ca. 55 °C and offers good shape fixing when the content exceeds 30 wt%. An easy-to-do and easy-to-know feature of the hybrid is that the optimization of shape memory effect can be achieved by generating bicontinous phases of SBS and dl-PLA, in which the dl-PLA content ranges from 30 to 70 wt%.  相似文献   

18.
Poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) were melt-blended in the presence of glycidyl methacrylate (GMA) by twin-screw extrusion. The physical properties, phase morphology, thermal properties, and melt rheological behavior of the blends were investigated by tensile tests, Charpy impact tests, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and advanced rheology expended system (ARES). With 2 or 5 wt% GMA, the tensile toughness of the PLA/PBAT blend was greatly increased without severe loss in tensile strength. The impact strength of the blend was also significantly improved at 1 wt% of GMA addition but ultimately trended to be saturated with increasing GMA. SEM micrographs revealed that better miscibility and more shear yielding mechanism were involved in the toughening of the blend. DSC results indicated that the blend is still a two-phase system in the presence of reaction agent and the addition of GMA was found to enhance the interfacial adhesion between PLA and PBAT. Rheological results revealed that the addition of T-GMA increased the storage moduli (G′), loss moduli (G′′) and complex viscosity of the blends at nearly all frequencies. The decreased shear-thinning tendency of the blends in the presence of T-GMA also implied improved melt stability during processing.  相似文献   

19.
Phase change materials (PCMs) are substances exhibiting phase transitions with large latent heats that can be used as thermal storage materials with a large energy storage capacity in a relatively narrow temperature range. In many practical applications the solid–liquid phase change is used. For applications accurate knowledge of different thermal parameters has to be available. In particular, the temperature dependence of the enthalpy around the phase transition has to be known with good accuracy. Usually, the phase transitions of PCMs are investigated with differential scanning calorimetry (DSC) at fast dynamic scanning rates resulting in the effective heat capacity from which the (total) heat of transition can be determined. Here we present adiabatic scanning calorimetry (ASC) as an alternative approach to arrive simultaneously at the equilibrium enthalpy curve and at the heat capacity. The applicability of ASC is illustrated with measurements on paraffin-based PCMs and on a salt hydrate PCM.  相似文献   

20.
Polylactide reinforced with 3 wt% of organo-modified montmorillonite, 5 wt% of stearic acid-modified calcium carbonate nanoparticles, 15 wt% of cellulose fibers (PLA/MMT, PLA/NCC, PLA/CF) and hybrid composites containing 15 wt% of fibers in addition to montmorillonite (PLA/MMT/CF) or calcium carbonate (PLA/NCC/CF) were prepared and examined. The nanoparticles were dispersed in polylactide almost homogeneously; montmorillonite was exfoliated during processing. Tg of polylactide remained unaffected but its cold crystallization was enhanced; the cold-crystallization behavior of the hybrid composites was dominated by nanofillers nucleating ability. The fibers and calcium carbonate decreased whereas exfoliated montmorillonite improved the thermal stability of the materials. Polylactide, PLA/NCC and PLA/MMT exhibited ability to plastic deformation, although the latter the weakest. Tensile behavior of the hybrid composites was strongly influenced by the fibers and similar to that of PLA/CF. All the fillers increased the storage modulus below Tg; that of PLA/MMT/CF and PLA/NCC/CF was improved with respect to polylactide by 50% and 45%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号