首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A novel graphene–carbon nanotube (graphene–CNT)/CoFe2O4/polyaniline composite with reticular branch structures had been fabricated by in situ chemical polymerization method. The textured structures of the as-prepared composites were characterized by the fourier transform infrared (FTIR) and X-ray diffraction (XRD). The morphology was analyzed by the scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electromagnetic properties were tested by vibrating sample magnetometer and four-probe conductivity tester. The results showed that the graphene–CNT/CoFe2O4/polyaniline composite had the unique reticular branch structures. When the mass ratio of the graphene–CNT/CoFe2O4 to aniline was 1:3, the magnetic saturation value of the composite achieved 39.6 emu g−1, and the conductivity reached 1.957 S cm−1. Based on the experimental results, a probable formation mechanism for the unique reticular branch structures was proposed.  相似文献   

2.
Phosphorus-doped Bi2Te3 films were synthesized on a stainless-steel electrode by electrochemical deposition. X-ray diffraction, scanning electron microscopy and transmission electron microscopy confirmed that the films are single-phased Bi2Te3 solid solutions with a rhombohedral structure. The as-prepared films exhibit n-type characteristics with the Hall coefficient −1.76E−2 m3 C−1 and the electrical conductivity 280 S cm−1. The thermal conductivity is 0.47 W m−1 K−1, which is as low as one-third of the value observed in the bulk material. The doped P atoms occupy the interstitial positions between the two adjacent Te(1) layers connected by Van der Waals interaction in Bi2Te3.  相似文献   

3.
Zinc oxide/graphene (ZnO/G) hybrids are prepared on n-Si (1 0 0) substrates by electrophoretic deposition and magnetron sputtering technique. The crystal structure, morphology and photoluminescence (PL) properties of the ZnO/G hybrids are analyzed via X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and fluorescence–phosphorescence spectrometer, respectively. The results indicate that the crystal quality of ZnO nanostructure deteriorates after depositing graphene buffer layer. Whereas many three dimensional stacking blowballs form in the ZnO/G hybrid, creating a larger surface area than that of ZnO nanostructure. The photoluminescence (PL) spectrum of the ZnO/G hybrid contains multi-peaks, which are consistent with ZnO nanostructure except for two new peaks at 390 and 618 nm. In addition, field emission measurement reveals that Eto and Ethr decrease from 8.01 V μm−1 and 14.90 V μm−1 of the ZnO nanostructure to 2.72 V μm−1 and 7.70 V μm−1 of the ZnO/G hybrid. ZnO/G hybrid is characteristic of having excellent emitting behavior suitable for application in field emission technology.  相似文献   

4.
Mesoporous anatase TiO2 nanopowder was synthesized by hydrothermal method at 130 °C for 12 h. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), HRTEM, and Brunauer-Emmett-Teller (BET) surface area. The as-synthesized sample with narrow pore size distribution had average pore diameter about 3-4 nm. The specific BET surface area of the as-synthesized sample was about 193 m2/g. Mesoporous anatase TiO2 nanopowders (prepared by this study) showed higher photocatalytic activity than the nanorods TiO2, nanofibers TiO2 mesoporous TiO2, and commercial TiO2 nanoparticles (P-25, JRC-01, and JRC-03). The solar energy conversion efficiency (η) of the cell using the mesoporous anatase TiO2 was about 6.30% with the short-circuit current density (Jsc) of 13.28 mA/cm2, the open-circuit voltage (Voc) of 0.702 V and the fill factor (ff) of 0.676; while η of the cell using P-25 reached 5.82% with Jsc of 12.74 mA/cm2, Voc of 0.704 V and ff of 0.649.  相似文献   

5.
CuIn3Se5, prepared by the fusion technique crystallizes in the P-chalcopyrite structure and exhibits n-type conduction ascribed to indium excess. The electrical conductivity follows an Arrhenius-type law with activation energy of 0.35 eV and an electron mobility of 10−4 cm2 V−1 s−1 in conformity with small polaron hopping. The optical gap (1.19 eV), determined from the diffuse reflectance spectrum, is properly matched to the sun spectrum. CuIn3Se5 is chemically stable and a corrosion rate of only 1.2 μmol year−1 is found at neutral pH. The slope and the intercept to C−2 = 0 of the Mott Schottky plot gives respectively an electron density of 3.75 × 1016 cm−3 and a flat band potential of −0.22 VSCE. The conduction band (−0.74 VSCE) therefore lies below the potential of H2O/H2 couple and as application, H2 photo-production is successfully achieved over CuIn3Se5. The best performance is obtained in S2O32− solution (10−2 M, pH ∼ 7) with an evolution rate of 0.54 mL g−1 min−1. The conversion efficiency (0.13%) is due to the formation of small depletion width (230 nm) and a large diffusion length compared to a very large penetration depth (∼1 μm). Attempts have been made to improve the photoactivity and the hetero-system CuIn3Se5/WO3 is compared favorably with respect to CuIn3Se5. The photoactivity is ascribed to electrons transfer from the sensitizer CuIn3Se5-conduction band (CB), acting as electrons pump, to WO3-CB (−0.4 VSCE) resulting in the enhanced water reduction.  相似文献   

6.
A one-pot synthetic method was used for the preparation of nanoporous carbon containing nitrogen from polypyrrole (PPY) using NaOH as the activated agent. The activation process was carried out under set conditions (NaOH/PPY = 2 and NaOH/PPY = 4) at different temperatures in 600–900 °C for 2 h. The effect of the activation conditions on the pore structure, surface functional groups and CO2 adsorption capacities of the prepared N-doped activated carbons was examined. The carbon was analyzed by X-ray photoelectron spectroscopy (XPS), N2/77 K full isotherms, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The CO2 adsorption capacity of the N-doped activated carbon was measured at 298 K and 1 bar. By dissolving the activation agents, the N-doped activated carbon exhibited high specific surface areas (755–2169 m2 g−1) and high pore volumes (0.394–1.591 cm3 g−1). In addition, the N-doped activated carbons contained a high N content at lower activation temperatures (7.05 wt.%). The N-doped activated carbons showed a very high CO2 adsorption capacity of 177 mg g−1 at 298 K and 1 bar. The CO2 adsorption capacity was found to be dependent on the microporosity and N contents.  相似文献   

7.
The low temperature thermoelectric properties of TiSe2, co-doped with Cu and S, are reported. Partial S substitution for Se changes the magnitude of the indirect bandgap, while the Cu-doping independently controls the n-type carrier concentration. The Seebeck coefficients are negative, in the range of −50 to −200 μV K−1, and the resistivities are 0.1-10 mΩ cm. The thermal conductivity for the sample with the largest thermoelectric power factor was found to be relatively low, 3-4 W m−1 K−1, and decreases with decreasing temperature. The thermoelectric efficiencies for the best materials found in this system, typified by Cu0.02TiSe1.7S0.3, were largest at 0.07 at 300 K and decreased to 0.01 at 75 K.  相似文献   

8.
In this paper, an environmentally friendly electroplating process of the composite Ni–P + TiO2 coatings was developed. Such coatings were prepared by in situ codeposition of Ni–P with TiO2 powder (anatase) on a polycrystalline copper substrate from the nickel-plating bath in which titanium dioxide particles were held in suspension. The codeposition was carried out under galvanostatic conditions on a rotating disc electrode. To optimize the production conditions of the Ni–P coatings modified with TiO2 by the method of mathematical statistics, the Hartley's polyselective quasi D optimum plan of experiments was used. The relationship between the percentage content in the electrodeposited composite Ni–P + TiO2 coatings (z) and the electrodeposition parameters like cathodic current density (jdep), bath temperature (T) as well as content of TiO2 powder suspended in the galvanic bath (c), has been described by the adequate cubic polynomial equation and illustrated graphically. Based on the Hartley's plan it can be stated that the maximal TiO2 content of 28.7 at.% in the Ni–P + TiO2 coating can be obtained for the following optimal parameters of the electrodeposition process: jdep = 0.05 A cm−2, c = 99 g dm−3 and T = 40 °C. The chemical and physical characteristics of the coating obtained under such optimum conditions, have been presented. The deposit exhibits the presence of TiO2 particles embedded into the amorphous Ni–P matrix. It has been ascertained that embedding of TiO2 powder to the amorphous Ni–P matrix leads to the production of deposits with large surface area. Such electrochemical codeposition method may be a good alternative in the field of porous composite coatings used in gas evolution.  相似文献   

9.
0.60Na2O-0.40P2O5 and (0.55−z)Na2O-0.05Bi2O3-zTiO2-0.40P2O5 glasses (0≤z≤0.15) were prepared by melting at 1000°C mixtures of Na2CO3, Bi2O3, TiO2 and (NH4)2HPO4. Differential Scanning Calorimetry (DSC) measurements give the variation of glass transition temperature (Tg) from 269°C (for 0.60Na2O-0.40P2O5) to 440°C (for z=0.15). The density measurements increases from 2.25 to 3.01 g/cm3. FTIR spectroscopy shows the evolution of the phosphate skeleton: (PO3) chains for 0.60Na2O-0.40P2O5 to P2O74− groups in the glasses containing Bi2O3 or both Bi2O3 and TiO2. When bismuth oxide and titania are added to sodium phosphate glass, phosphate chains are depolymerized by the incorporation of distorted Bi(6) and Ti(6) units through POBi and POTi bonds. Bi2O3 and TiO2 are assumed to be present as six co-ordinated octahedral [BiO6/2]3−and [TiO6/2]2− units again with shared corners. This is accompanied by the simultaneous conversion of [POO3/2] into [PO4/2]+ units which achieves charge neutrality in the glasses.  相似文献   

10.
Nanostructured nickel-manganese oxides composite was prepared by the sol-gel and the chemistry deposition combination new route. The surface morphology and structure of the composite were characterized by scanning electron microscope and X-ray diffraction. The as-synthesized NiO/MnO2 samples exhibit higher surface area of 130-190 m2 g−1. Cyclic voltammetry and galvanostatic charge/discharge measurements were applied to investigate the electrochemical performance of the composite electrodes with different ratios of NiO/MnO2. When the mass ratio of MnO2 and NiO in composite material is 80:20, the specific capacitance value of NiO/MnO2 calculated from the cyclic voltammetry curves is 453 F g−1, for pure NiO and MnO2 are 209, 330 F g−1 in 6 mol L−1 KOH electrolyte and at scan rate of 10 mV s−1, respectively. The specific capacitance of NiO/MnO2 electrode is much larger than that of each pristine component. Moreover, the composite electrodes showed high power density and stable electrochemical properties.  相似文献   

11.
Nitrogen-doped TiO2 was developed to enable photocatalytic reactions using the visible range of the solar spectrum. This work reports on the synthesis, characterisation and kinetic study of interstitial N-doped TiO2 prepared by the sol–gel method using three different types of nitrogen dopants: diethanolamine, triethylamine and urea. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV–visible spectroscopy were used to analyse the titania. Different interstitial N-doped TiO2 properties, such as absorption ability in the UV–visible light region, redshift in adsorption edge, good crystallisation and composition ratio of titania structures (anatase and rutile) could be obtained from different nitrogen dopants. Amongst investigated nitrogen precursors, diethanolamine provided the highest visible light absorption ability of interstitial N-doped TiO2 with the smallest energy bandgap and the smallest anatase crystal size, resulting in the highest efficiency in 2-chlorophenol degradation. The photocatalytic activity of all N-doped TiO2 can be arranged in the following order: TiO2/diethanolamine > TiO2/triethylamine > TiO2/urea > un-doped TiO2. The initial rate of 2-chlorophenol degradation using the interstitial N-doped TiO2 with diethanolamine was 0.59 mg/L-min and the kinetic constant was 2.34 × 10−2 min−1 with a half-life of 98 min. In all cases, hydroquinone was detected as a major intermediate in the degradation of 2-chlorophenol.  相似文献   

12.
《Materials Research Bulletin》2013,48(11):4544-4547
For the first time, Cu nanoparticles were evenly decorated on MoS2 nanosheet by chemical reduction. The as-prepared Cu-MoS2 hybrid was characterized by atomic force microscope (AFM), Raman spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and then used to fabricate a non-enzymatic glucose sensor. The performance of our sensor was investigated by cyclic voltammetry and amperometric measurement in alkaline media. Electrochemical tests showed that Cu-MoS2 hybrid exhibited synergistic electrocatalytic activity on the oxidation of glucose with a high sensitivity of 1055 μA mM−1 cm−2 and a linear range up to 4 mM.  相似文献   

13.
Two series of mixed oxides with formula [Eu2−xMx][Sn2−xMx]O7−3x/2 (M = Mg or Zn) have been synthesized. The study by X-ray diffraction and Fourier transform infrared spectroscopy shows that the solids obtained are new non-stoichiometric solid solutions with the pyrochlore type structure. For both series a decrease of the cell parameter is observed when the degree of substitution, x, increases. The structural refinements (X-ray studies) were achieved in the space group Fd-3m, no. 227 (origin at center -3m) by using the Fullprof software. The Rietveld refinements show that the divalent cations M2+ (Mg2+, Zn2+) substitute isomorphically for Eu3+ and Sn4+ ions producing vacancies in the anionic sublattice.  相似文献   

14.
15.
A room temperature fabrication method for the mass production of carbon nanotube (CNT) field emission micro-cathode arrays is reported. The technique combines electroplating of a CNT/Ni composite and micro-machining. This method combines the advantages of direct growth and screen printing conventionally used to fabricate such structures and avoids their disadvantages. Due to its integration and room temperature processing, the technique is proven to be advantageous in mass production and low cost. Results of field emission testing show that the CNT micro-cathodes have excellent field-emission properties, such as high current density (15.7 mA/cm2), field enhancement factor (2.4 × 106/cm), and good stability (109 h for 10% degradation of current density from 400 μA/cm2).  相似文献   

16.
Ce-Al-MCM-41, TiO2/Al-MCM-41 and TiO2/Ce-Al-MCM-41 materials with varying contents of Ce (by impregnation) and TiO2 loaded (by solid-state dispersion) on Al-MCM-41 support are prepared. The Ce modified and TiO2 loaded composite systems are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS) and X-ray photoelectron spectroscopy (XPS) techniques. The DRS and XPS of low Ce content (0.2-0.5 wt.%) modified Al-MCM-41 samples are showing more characteristic of Ce3+ species wherein cerium in interaction with Al-MCM-41 and that of high Ce (0.8, 3.0 wt.%) content modified samples are showing the characteristic of both Ce4+and Ce3+species. A series of Ce-modified Al-MCM-41 and TiO2 loaded composite catalysts are evaluated for photocatalytic degradation of phenol under UV irradiation. Low Ce content in Ce3+ state on Al-MCM-41 is showing good photoactivity in comparison with high Ce content samples and pure ceria. The composite TiO2/Ce-Al-MCM-41 is showing enhanced degradation activity due decreased rate of electron-hole recombination on TiO2 surface by the redox properties of cerium. The photocatalyst TiO2/Ce-Al-MCM-41 with an optimum of 10 wt.% TiO2 and 0.3 wt.% Ce is showing maximum phenol degradation activity. The possible mechanism of phenol degradation on the composite photocatalyst is proposed.  相似文献   

17.
Ball-nanostructured MnO2/MWCNTs composite was successfully prepared by microwave irradiation. The surface morphology and structures of the composite were examined by scanning electron microscope and X-ray diffraction. Multi-walled carbon nanotubes play a role as sustainment to inhibit MnO2 nanoplates from collapsing into nanorods. The electrochemical studies indicated that the composite had ideal capacitive performance and high specific capacitances of 298 F g− 1, 213 F g− 1 and 198 F g− 1 at the current density of 2 mA·cm− 2, 10 mA·cm− 2 and 20 mA·cm− 2, respectively. The formation mechanism of nanostructured MnO2/MWCNTs and the electrochemical behaviour of composites were discussed in detail.  相似文献   

18.
Uniform CuO nanostructures have been synthesized on copper foil substrates by oxidation of Cu in alkaline condition by a simple wet chemical route at room temperature. By controlling the alkaline condition (pH value) different CuO nanostructures like nanoneedles, self-assembled nanoflowers and staking of flake-like structures were achieved. The phase formation and the composition of the films were characterized by X-ray diffraction and energy dispersive analysis of X-ray studies. X-ray photoelectron spectroscopic studies indicated that the samples were composed of CuO. The morphologies of the films were investigated by scanning electron microscopy. A possible growth mechanism is also proposed here. Band gap energies of the nanostructures were determined from the optical reflectance spectra. The different CuO nanostructures showed good electron field emission properties with turn-on fields in the range 6-11.3 V μm−1. The field emission current was significantly affected by the morphologies of the CuO films.  相似文献   

19.
Electric double layer capacitors (EDLCs) based on activated carbon electrodes and poly (vinyl alcohol)–lithium perchlorate (PVA–LiClO4)-nanosized titania (TiO2) doped polymer electrolyte have been fabricated. Incorporation of TiO2 into PVA–LiClO4 system increases the ionic conductivity. The highest ionic conductivity of 1.3 × 10−4 S cm−1 is achieved at ambient temperature upon inclusion of 8 wt.% of TiO2. Differential scanning calorimetry (DSC) analyses reveal that addition of TiO2 into polymer system increases the flexibility of polymer chain and favors the ion migration. Scanning electron microscopy (SEM) analyses display the surface morphology of the nanocomposite polymer electrolytes. The electrochemical stability window of composite polymer electrolyte is in the range of −2.3 V to 2.3 V as shown in cyclic voltammetry (CV) studies. The performance of EDLC is evaluated by electrochemical impedance spectroscopy (EIS), CV and galvanostatic charge–discharge technique. CV test discloses a nearly rectangular shape, which signifies the capacitive behavior of an ELDC. The EDLC containing composite polymer electrolyte gives higher specific capacitance value of 12.5 F g−1 compared to non-composite polymer electrolyte with capacitance value of 3.0 F g−1 in charge–discharge technique. The obtained specific capacitance of EDLC is in good agreement with each method used in this present work. Inclusion of filler into the polymer electrolyte enhances the electrochemical stability of EDLC.  相似文献   

20.
Electrical conductivity in the dark, σ, and thermoelectric power, S, of PbxSn1−xTe0.5Se0.5 films with x = 0.4, 0.6, 0.8, and 1 were studied for films annealed at 473 K in the temperature range 300-473 K, while the Hall voltage was investigated at room temperature. The temperature dependence of σ revealed an intrinsic conduction mechanism above 370 K, while for temperatures less than 370 K an extrinsic conduction is dominant. Both activation energy, ΔE1, and the energy gap, Eg, were found to decrease with increasing Sn content. This decrease of Eg with increasing Sn content revealed that band inversion exists. The variation of S with temperature revealed that the investigated samples are non-degenerate semiconductors with p-type conduction. Also, the Fermi energy, EF, was determined from the linear variation of S with 1/T in the intrinsic range. The compositional dependence of the room temperature Hall constant, RH (0.21-0.38 cm3/Coul.), hole carrier's concentration, p (2.9-1.6 × 1019 cm−3), Hall mobility, μH (0.88-0.03 cm2/V s), and effective mass, m/me (0.28-0.78) are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号