首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new cation-deficient hexagonal perovskites Ba4LaMNb3O15 (M = Ti, Sn) ceramics were prepared by high temperature solid-state reaction route. The phase and structure of the ceramics were characterized by X-ray diffraction, scanning electron microscopy (SEM). The microwave dielectric properties of the ceramics were studied using a network analyzer. The Ba4LaTiNb3O15 has high dielectric constant of 52, high quality factors (Q) 3500 (at 4.472 GHz), and temperature variation of resonant frequency (τf) +93 ppm °C−1 at room temperature; Ba4LaSnNb3O15 has dielectric constant of 39 with high Q value of 2510 (at 5.924 GHz), and τf −29 ppm °C−1.  相似文献   

2.
The microwave dielectric properties and the microstructures of 0.25 wt.% CuO-doped LaAlO3 ceramics with ZnO additions have been investigated. The sintered LaAlO3 ceramics are characterized by X-ray diffraction spectra and scanning electron microscopy (SEM). Tremendous reduction in sintering temperature can be achieved with the addition of sintering aids CuO and ZnO. The ceramic samples show that dielectric constants (εr) of 22−24 and Q×f values of 33,000−57,000 (at 9.7 GHz) can be obtained at low sintering temperatures 1340−1460°C. The temperature coefficient of resonant frequency varies from −24 to −48 ppm/°C. At the level of 0.25 wt.% CuO and 1 wt.% ZnO additions, LaAlO3 ceramics possesses a dielectric constant (εr) of 23.4, a Q×f value of 57,000 (at 9.7 GHz) and a τf value of −38 ppm/°C at 1400°C for 2 h.  相似文献   

3.
The microwave dielectric properties and the microstructures of MgNb2O6 ceramics with CuO additions (1-4 wt.%) prepared with conventional solid-state route have been investigated. The sintered samples exhibit excellent microwave dielectric properties, which depend upon the liquid phase and the sintering temperature. It is found that MgNb2O6 ceramics can be sintered at 1140 °C due to the liquid phase effect of CuO addition. At 1170 °C, MgNb2O6 ceramics with 2 wt.% CuO addition possesses a dielectric constant (εr) of 19.9, a Q×f value of 110,000 (at 10 GHz) and a temperature coefficient of resonant frequency (τf) of −44 ppm/°C. The CuO-doped MgNb2O6 ceramics can find applications in microwave devices requiring low sintering temperature.  相似文献   

4.
The effect of glass addition on sintering temperature and microwave dielectric properties of Cu2ZnNb2O8 (CZN) is investigated for possible low temperature co-fired ceramic (LTCC) application. The CZN ceramic was prepared by the solid-state ceramic route. The phase formation, microstructure and elemental composition of the ceramics were studied using X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Energy Dispersive Analysis. The CZN sintered at 975 °C/4 h has ?r = 15.2, tan δ = 0.0007 (at 5.1 GHz) and τf of −98 ppm °C−1 and CTE = 1.9 ppm °C−1. The addition of LBS and LMZBS glasses lowered the sintering temperature of CZN to below the melting point of silver. The 1 wt% LBS added CZN sintered at 935 °C/4 h had ?r = 14.7, tan δ = 0.001 (at 5.1 GHz), τf = −19 ppm °C−1 and CTE = −0.6 ppm °C−1. The addition of 0.7 wt% LMZBS to CZN and sintered at 935 °C/4 h had ?r = 14.8, tan δ = 0.002 (at 5.1 GHz), τf = −39 ppm °C−1 and CTE = −0.9 ppm °C−1.  相似文献   

5.
Effect of Li2O-B2O3-SiO2 (LBS) glass on the sintering behavior and the microwave dielectric properties of (Zn0.8 Mg0.2)2SiO4-TiO2 (ZMST) ceramics were investigated. The Li2O-B2O3-SiO2 glass lowered the sintering temperature of ZMST ceramics effectively from 1250 to 870 °C. The unknown second phase, which was formed in the ZMST ceramics increased with the addition of LBS glass. With increasing the LBS glass content, the bulk density, dielectric constant (εr) and the maximum Q × f value decreased, and the temperature coefficient of resonant frequency (τf) shifted to a negative value. (Zn0.8 Mg0.2)2SiO4-TiO2 ceramics with 3 wt.% Li2O-B2O3-SiO2 glass sintered at 870 °C for 2 h shows excellent dielectric properties: εr = 8.48, Q × f = 11500 GHz, and τf = 0 ppm/°C.  相似文献   

6.
The microwave dielectric properties and the microstructures of the (1−x)MgTiO3-xCaTiO3 ceramic system were investigated. With partial replacement of Mg by Co, dielectric properties of the (1−x)(Mg0.95Co0.05)TiO3-xCaTiO3 ceramics can be promoted. The microwave dielectric properties are strongly correlated with the sintering temperature. At 1275°C, the 0.95(Mg0.95Co0.05)TiO3-0.05CaTiO3 ceramics possesses excellent microwave dielectric properties: a dielectric constant εr of 20.3, a Q×f value of 107 000 ( at 7 GHz) and a τf value of −22.8 ppm/°C. By appropriately adjusting the x value in the (1−x)(Mg0.95Co0.05)TiO3-xCaTiO3 ceramic system, zero τf value can be achieved. With x=0.07, a dielectric constant εγ of 21.6, a Q×f value of 92 000 (at 7 GHz) and a τf value of −1.8 ppm/°C was obtained for 0.93(Mg0.95Co0.05)TiO3-0.07CaTiO3 ceramics sintered at 1275°C for 4 h.  相似文献   

7.
A novel Li-based spinel compound with the composition of MgLi2/3Ti4/3O4 was synthesized by the conventional solid-state reaction method. The phase structure was studied by X-ray diffraction (XRD) technique. When the calcination temperature was over 1050 °C, a single phase compound which has a cubic structure [Fd-3m (227)] with cell parameters of a = 8.4057 Å, V = 593.91 Å3, ρ = 3.51 g cm3 and Z = 8 was obtained. MgLi2/3Ti4/3O4 ceramic could be well densified after sintering above 1125 °C. The microwave dielectric properties were measured using a microwave vector network analyzer in the frequency range of 7–9 GHz MgLi2/3Ti4/3O4 ceramic sintered at 1125 °C for 2 h showed microwave dielectric properties of ?r = 20.2, Q × f = 62,300 GHz, and τf = −27.1 ppm °C1. Furthermore, 0.95MgLi2/3Ti4/3O4–0.05CaTiO3 ceramic sintered at 1200 °C for 2 h exhibited good properties of ?r = 22.6, Q × f = 48,000 GHz, and τf = −2.3 ppm °C1.  相似文献   

8.
The phases, microstructure and microwave dielectric properties of ZnNb2O6xCaTiO3 ceramics with BaCu(B2O5) glass additions prepared by solid state reaction method were charactered by using X-ray diffraction, Scanning electron microscopy and Advantest network analyzer. The τf of ZnNb2O6 was modified to near 0 ppm °C−1 by incorporating CaTiO3 with opposite τf values on the basis of Lichtenecker empirical rule. The microwave dielectric properties of ZnNb2O6xCaTiO3 (x = 8.0 wt.%) samples with BaCu(B2O5) glass additives sintered in 900–1000 °C were investigated, and the results indicated that the behaviors of the εr and Q × f were associated with the sintering temperature and the amount of BaCu(B2O5) glass. The sintering temperature of the ceramics was reduced to 950 °C from 1175 °C. Addition of 5.0 wt.% BaCu(B2O5) glass in ZnNb2O6xCaTiO3 (x = 8.0 wt.%) ceramics sintered at 950 °C showed excellent dielectric properties of εr = 20.2, Q × f = 14,100 GHz (f = 7.3 GHz) and τf = 0 ppm °C−1. Moreover, the material had a chemical compatibility with silver, which represented a promising candidate materials for low-temperature-co-fired ceramics applications.  相似文献   

9.
The La1−xBix(Mg0.5Sn0.5)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the La0.97Bi0.03(Mg0.5Sn0.5)O3 ceramics revealed no significant variation of phase with sintering temperatures. An apparent density of 6.50 g cm−3, a dielectric constant (?r) of 20.2, a quality factor (Q × f) of 58,100 GHz and a temperature coefficient of resonant frequency (τf) of −84.2 ppm °C−1 were obtained for La0.97Bi0.03(Mg0.5Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

10.
Microwave dielectric ceramics of Ba5Nb4−xVxO15 (x = 0-1) were prepared by a solid-state reaction method. Vanadium substitution can markedly lower the sintering temperature of Ba5Nb4O15 from 1450 to 1100 °C. The X-ray powder diffraction analysis reveals the multiphase nature of this system. A hexagonal-to-orthorhombic phase transition was also observed for the BaNb2O6 secondary phase. The microwave dielectric properties, such as τf, εr and Q × f value, decreased with increasing vanadium content for samples sintered at 1100 °C. There was an apparent increase in τf and Q × f value for samples (x ≥ 0.5) sintered at 1200 °C due to the hexagonal-to-orthorhombic phase transition of the BaNb2O6 phase. These results suggested that the microwave dielectric properties of multiphase ceramics strongly depended on the phase compositions and the phase transitions.  相似文献   

11.
The microstructures and the microwave dielectric properties of the x(Mg0.95Zn0.05)TiO3-(1 − x) Ca0.8Sm0.4/3TiO3 ceramic system were investigated. In order to achieve a temperature-stable material, we studied a method of combining a positive temperature coefficient material with a negative one. Ca0.8Sm0.4/3TiO3 has dielectric properties of dielectric constant εr ~ 120, Q × f value ~ 13,800 GHz and a large positive τf value ~ 400 ppm/°C. (Mg0.95Zn0.05)TiO3 possesses high dielectric constant (εr ~ 16.21), high quality factor (Q × f value ~ 210,000 at 9 GHz) and negative τf value (− 59 ppm/°C). Sintering at 1300 °C with x = 0.9, 0.9(Mg0.95Zn0.05Ti)O3 − 0.1 Ca0.8Sm0.4/3TiO3 has a dielectric constant (εr) of 22.7, a Q × f value of 124,000 GHz and a temperature coefficient of resonant frequency (τf) of − 6.3 ppm/°C.  相似文献   

12.
The microwave characteristics and the microstructures of 0.88Al2O3-0.12TiO2 with various amounts of MgO-CaO-SiO2-Al2O3 (MCAS) glass sintered at different temperatures have been investigated. The sintering temperature can be lowered to 1300 °C by the addition of MCAS glass. The densities, dielectric constants (εr) and quality values (Q×f) of the MCAS-added 0.88Al2O3-0.12TiO2 ceramics decrease with the increase of MCAS glass content. The temperature coefficients of the resonant frequency (τf) are shifted to more negative values as the MCAS content or the sintering temperatures increase. The change of the crystalline phases of Al2TiO5 phase and rutile-TiO2 phase has profound effects on the microwave dielectric properties of the MCAS-added Al2O3-TiO2 ceramics. As sintered at 1250 °C, 0.88Al2O3-0.12TiO2 ceramics with 2 wt.% MCAS glass addition exists a εr value of 8.63, a Q×f value of 9578 and a τf value of +5 ppm/°C.  相似文献   

13.
The effects of B2O3 addition on the microwave dielectric properties and the microstructures of (1−x)LaAlO3-xSrTiO3 ceramics prepared by conventional solid-state routes have been investigated. Doping with 0.25 wt.% B2O3 can effectively promote the densification and the microwave dielectric properties of (1−x)LaAlO3-xSrTiO3 ceramics. It is found that LaAlO3-SrTiO3 ceramics can be sintered at 1400°C due to the liquid phase effect of a B2O3 addition observed by scanning electronic microscopy (SEM). The dielectric constant as well as the Q×f value decreases with increasing B2O3 content. At 1460°C, 0.46LaAlO3-0.54SrTiO3 ceramics with 0.25 wt.% B2O3 addition possesses a dielectric constant (εr) of 35, a Q×f value of 38,000 (at 7 GHz) and a temperature coefficients of resonant frequency (τf) of −1 ppm/°C.  相似文献   

14.
High dielectric materials have gained an important position in microwave electronics by reducing the size and cost of components for a wide range of applications from mobile telephony to spatial communications. Ba(Zn1/3Ta2/3)O3 (BZT) is an A(B′B″)O3 type perovskite material, showing ultra high values of the quality factor Q. Ceramic-based BZT dielectric materials were prepared by solid state reaction. The samples were sintered at temperatures in the range 1400 ÷ 1600 °C for 4 h. Compositional, structural and morphological characterization were performed by using XRD, SEM and EDX analysis. The dielectric properties were measured in the microwave range (6 ÷ 7 GHz). An additional annealing at 1400 °C for 10 h has improved some dielectric parameters. For samples sintered at temperatures higher than 1500 °C, the permittivity values were obtained in the interval 30 ÷ 35 and almost do not change the value after the annealing. The Q × f product substantially increases up to about 135,000 GHz, exhibiting a low temperature coefficient of the resonant frequency (τf) in microwaves. The best parameters were obtained for the samples sintered at 1600 °C with additional annealing. The achieved high values of the Q × f product recommend these materials for microwave and millimeter wave applications.  相似文献   

15.
Li2TiO3 ceramics were prepared at the sintering temperatures from 1050 to 1250 °C. The optimal microwave dielectric properties were ?r = 23.29, Q × f = 15,525 GHz (5.9 GHz), and τf = 35.05 ppm/ °C for the sample sintered at 1200 °C. The microwave dielectric properties were improved obviously when the Li2TiO3 ceramics were sintered at low temperatures with small additions of H3BO3 (B2O3 in the form of H3BO3). Only monoclinic Li2TiO3 was found in the pure or H3BO3-doped Li2TiO3 ceramics. About 1.0 wt.% H3BO3 addition aided the sintering of Li2TiO3 ceramics effectively while excessive H3BO3 (≥2.5 wt.%) was not favorable. Typically the best microwave dielectric properties were ?r = 23.28, Q × f = 37,110 GHz (6.3 GHz), and τf = 30.43 ppm/ °C for the 1.0 wt.% H3BO3-doped Li2TiO3 ceramic sintered at 920 for 3 h, which is promising for LTCC applications.  相似文献   

16.
The 0.83ZnAl2O4-0.17TiO2 (ZAT) ceramics were synthesized by solid state ceramic route. The effect of 27B2O3-35Bi2O3-6SiO2-32ZnO (BBSZ) glass on the microwave dielectric properties of ZAT was investigated. The crystal structure and the microstructure of the ceramic-glass composites were studied by X-ray diffraction and scanning electron microscopic techniques. The low frequency dielectric loss was measured at 1 MHz. The dielectric properties of the sintered samples were measured in the microwave frequency range by the resonance method. Addition of 0.2 wt% of BBSZ improved the dielectric properties with quality factor (Qu × f) > 120,000 GHz, temperature coefficient of resonant frequency (τf) = −7.3 ppm/°C and dielectric constant (?r) = 11.7. Addition of 10 wt% of BBSZ lowered the sintering temperature to about 950 °C with Qu × f > 10,000 GHz, ?r = 10 and τf = −23 ppm/°C. The reactivity of 10 wt% BBSZ added ZAT with silver was also studied. The results show that ZAT doped with suitable amount of BBSZ glass is a possible material for low-temperature co-fired ceramic (LTCC) application.  相似文献   

17.
The effects of B2O3 addition, as a sintering agent, on the sintering behavior, microstructure and microwave dielectric properties of the 11Li2O-3Nb2O5-12TiO2 (LNT) ceramics have been investigated. With the low-level doping of B2O3 (≤2 wt.%), the sintering temperature of the LNT ceramic could be effectively reduced to 900 °C. The B2O3-doped LNT ceramics are also composed of Li2TiO3ss and “M-phase” phases. No other phase could be observed in the 0.5-2 wt.% B2O3-doped ceramics sintered at 840-920 °C. The addition of B2O3 induced no obvious degradation in the microwave dielectric properties but increased the τf values. Typically, the 0.5 wt.% B2O3-doped ceramics sintered at 900 °C have better microwave dielectric properties of ?r = 49.2, Q × f = 8839 GHz, τf = 57.6 ppm/°C, which suggest that the ceramics could be applied in multilayer microwave devices requiring low sintering temperatures.  相似文献   

18.
Crystal structure and microwave dielectric properties of (1−x)NdAlO3-xCaTiO3 ceramics have been investigated. Crystal structure of the specimens changed with the composition. Rhombohedral structure was found for the specimens with x≤0.1. When 0.3≤x≤0.7, the specimens had the tetragonal structure and it changed to the orthorhombic structure as x exceeded 0.7. Two types of the second phases were observed in (1−x)NdAlO3-xCaTiO3 ceramics. For the specimens with x≤0.5, Nd4Al2O9 phase was observed and Al-rich phase was found in the specimens with x≥0.7. The dielectric constant (εr) and the temperature coefficient of the resonant frequency (τf) increased with the increase of x. The Q×f value of the specimen increased with x and exhibited the maximum value when x=0.5. The microwave dielectric properties of Q×f=45,000 GHz, εr=45 and τf=−1.5 ppm/°C were obtained for 0.3NdAlO3-0.7CaTiO3 ceramics.  相似文献   

19.
The phases, microstructure and microwave dielectric properties of ZnTiNb2O8 ceramics with BaCu(B2O5) additions prepared by solid-state reaction method have been investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The pure ZnTiNb2O8 ceramic shows a high sintering temperature of about 1250 °C. However, it was found that the addition of BaCu(B2O5) lowered the sintering temperature of ZnTiNb2O8 ceramics from above 1250 °C to 950 °C due to the BCB liquid-phase. The results showed that the microwave dielectric properties were strongly dependent on densification, crystalline phases and grain size. Addition of 3 wt% BCB in ZnTiNb2O8 ceramics sintered at 950 °C afforded excellent dielectric properties of ?r = 32.56, Q × f = 20,100 GHz (f = 5.128 GHz) and τf = −64.87 ppm/°C. These represent very promising candidates for LTCC dielectric materials.  相似文献   

20.
The Sr–Gehlenite (Sr2Al2SiO7) ceramic has been prepared by the conventional solid-state ceramic route. Phase pure Sr2Al2SiO7 (SAS) ceramic sintered at 1525 °C for 4 h has ?r = 7.2 and Qu × f = 33,000 GHz. The SAS showed large negative τf of −37.0 ppm/ °C. A low value of τf was achieved by preparing SAS–CaTiO3 composite. The composite with 0.04 volume fractions (Vf) CaTiO3 sintered at 1500 °C for 4 h showed good microwave dielectric properties: ?r = 8.6, Qu × f = 20,400 GHz and τf = +8.5 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号