首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 558 毫秒
1.
Nano-hydroxyapatite (HA) was grown on functionalized multiwalled carbon nanotubes (MWCNTs) deposited on TiO2 nanofibers (NFs) that were hydrothermally grown on Ti metal sheets. The HA was electrochemically grown on the MWCNTs/TiO2 porous layer. It was found that the HA grows on the MWCNTs/TiO2 NFs in the form of dense coating with nanorice grain-shaped. The incorporation of MWCNTs between HA and TiO2 NFs has led to higher adhesion strength as measured by micro-scratching test indicating the benefit of MWCNTs on the improving the bonding strength of HA layer. The obtained coatings exhibit excellent corrosion resistance in simulated body fluid. It is expected that this simple route for preparing the new HA/MWCNTs/TiO2/Ti-layered structure might be used not only in the biomedical field, but also in catalysis and biological sensing among others.  相似文献   

2.
In order to eliminate micro-cracks in the monolithic hydroxyapatite (HA) and composite hydroxyapatite/carbon nanotube (HA/CNT) coatings, novel HA/TiO2/CNT nanocomposite coatings on Ti6Al4V were attempted to fabricate by a single-step electrophoretic codeposition process for biomedical applications. The electrophoretically deposited layers with difference contents of HA, TiO2 (anatase) and CNT nanoparticles were sintered at 800°C for densification with thickness of about 7–10 μm. A dense and crack-free coating was achieved with constituents of 85 wt% HA, 10 wt% TiO2 and 5 wt% CNT. Open-circuit potential measurements and cyclic potentiodynamic polarization tests were used to investigate the electrochemical corrosion behavior of the coatings in vitro conditions (Hanks’ solution at 37°C). The HA/TiO2/CNT coatings possess higher corrosion resistance than that of the Ti6Al4V substrate as reflected by nobler open circuit potential and lower corrosion current density. In addition, the surface hardness and adhesion strength of the HA/TiO2/CNT coatings are higher than that of the monolithic HA and HA/CNT coatings without compromising their apatite forming ability. The enhanced properties were attributed to the nanostructure of the coatings with the appropriate TiO2 and CNT contents for eliminating micro-cracks and micro-pores.  相似文献   

3.
We demonstrate an approach for the coating of nanostructured leaf like hydroxyapatite (HAp)/TiO2 composite on glass substrate by sol-gel dip coating process. HAp/TiO2 nanocomposite thin film was obtained by controlling the dipping rate and the dipping cycle. It was observed from Scanning Electron Microscope that leaf like nanostructured film was deposited on the glass substrate. However, the structure of the film was changed with the dipping cycle and dipping rate. Transmission Electron Microscopic analysis further confirms the morphology of the nanostructured coatings. The presence of Ti, O, Ca and P was detected by Energy Dispersive X-ray Analysis. We further confirmed the composite by X-ray diffraction analysis. Atomic Force Microscope analysis indicates that the films are composed of nanoparticles ranging from 100 to 200 nm and the films were observed to present well-defined grain boundaries. It has been shown that nanocomposite coatings are dependent on the sol concentration, dipping parameters, and the composition of HAp and TiO2.  相似文献   

4.
In situ composite coating of hydroxyapatite (HA)/TiO2 were produced on titanium (Ti) substrate by micro-arc oxidation coupled with electrophoretic deposition (MAO&EPD) technique with different concentrations of HA particles in the 0.2 M NaOH electrolyte solution. The surface morphology and chemical composition of the hybrid coating were effected by HA concentration. The amount of HA particles incorporated into coating layer increased with increasing HA concentration used in the electrolyte solution. The corrosion behavior of the coating layer in simulated body fluids (SBF) was evaluated using a potentiodynamic polarization test. The corrosion resistance of the coated sample was increased compared to the untreated Ti sample. The in vitro bioactivity assessment showed that the MAO&EPD treated Ti substrate possessed higher apatite-forming ability than the untreated Ti. Moreover, the apatite-forming ability had a positive correlation with HA concentration. In addition, the cell behavior was also examined using cell proliferation assay and alkaline phosphatase ability. The coating formed at HA concentration of 5 g/L exhibited the highest cell ability.  相似文献   

5.
HA and its composite particles (HA/Ti, HA/TiO2) were plasma-sprayed into water as well as on the Ti substrate, respectively. The microstructure and phase compositions of the sprayed HA and its composite particles before and after impinging on the substrate were studied by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The results showed that the HA in the composite particles sprayed into water had a higher crystallinity than that in the composite coating. The addition of Ti or TiO2 could both influence the decomposition of HA, but no chemical reacting product between them was formed before and after impinging on the substrate. However, EDS analyses showed the occurrence of interdiffusion of elements between HA and TiO2, which was favorable to enhance the cohesive strength of particles in the composite coating. The post heat treatment at 650 °C for 2 h can effectively improve the crystallinity of coating by transforming amorphous phases into HA.  相似文献   

6.
The purpose of this study is to synthesize and characterize nanosized titania (TiO2), zinc oxide (ZnO), and its composite coating on Ti–6Al–4V to enhance its corrosion protection behavior in Ringer's solution. Nanosized powders of TiO2 and ZnO was characterized by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and scanning electron microscopy - energy dispersive atomic spectroscopy (SEM-EDAX) analysis. As a result of antibacterial activity, both ZnO and TiO2/ZnO have produce remarkable inhibition zone on Escherichia coli. The antibacterial activity of composites are due to the combined effect of ZnO on TiO2. The adherence and surface uniformity of TiO2/ZnO composite film on titanium implant was examined by optical microscopy and Vickers microhardness test. Corrosion resistant behavior of the coating on titanium implant was investigated by tafel polarization and impedance analysis. The composite coatings on Ti–6Al–4V have produced improved corrosion resistance with a pronounced shift in the anodic corrosion potential (Ecorr) with a corresponding less corrosion current density (Icorr) compared to monophase coating. Similar results have been obtained for impedance analysis which indicated a reduction in double layer capacitance (Cdl) and with enhancement in charge transfer resistance (Rct). These observations suggest improved corrosion resistance property of TiO2/ZnO composite coating on Ti–6Al–4V.  相似文献   

7.
This paper deals with a simple and low-cost method developed to deposit hematite (α-Fe2O3) layers on a fluorine-doped tin oxide (FTO/F:SnO2) substrate by thermal decomposition of solid iron(III) chloride hexahydrate (FeCl3⋅ 6H2O). Deposition procedure takes place through chemical intermediate iron(III) oxide chloride (FeOCl) film. A crucial influence of atmosphere dynamics involved in the calcination process of FeOCl has been observed. As-deposited films were characterized by means of Conversion Electron Mössbauer Spectroscopy (CEMS), Grazing Angle X-Ray Diffractometry (GAXRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis. Final nanocrystalline hematite film with a cactus-field-like design consists of 20 nm thick porous crystal plates. A process of hematite doping by tin atoms from substrate coating is also discussed.  相似文献   

8.
This paper reports on novel nanosized acid resistant material base on the modification of eggshell powder and titanium dioxide (TiO2-EB) for enamel remineralization. The TiO2-EB was prepared by ball milling eggshell powder and titanium dioxide. Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and ImageJ were used to characterise TiO2-EB. A computation model using Material Studio Software was used to explain the mechanism of TiO2-EB interaction. In addition, the acid resistant of TiO2-EB was evaluated by comparison using three commercial toothpaste. The mean pressure value (kPa/s) was measured using a pressure sensor. The FTIR, XRD analysis confirmed the surface modification of TiO2-EB. The SEM image revealed that pure TiO2 particles are spread on the surface of eggshell powder. The TEM image revealed spherical particles in TiO2-EB. The ImageJ showed the average particle size of TiO2-EB to be 13 nm. In addition, the commercial toothpastes doped with TiO2-EB showed an improved acid resistant. The salient features of this study indicate that TiO2-EB will effectively remineralized enamel lesions while offering better protective covering to the enamel.  相似文献   

9.
Hydroxyapatite (HA) coating was proved having bioactive property and hence improving the bonding strength on bone tissue without inducing the growth of fiber tissue. However, the weak adhesion between HA and metal implants is still the major problem. In this study, a novel method of electrolytic HA/ZrO2 double layers coating was successfully conducted on F-136 Ti–6Al–4V implant alloy in ZrO2(NO3)2 aqueous solution and subsequently in the mixed solution of Ca(NO3)2 and NH4H2PO4. After annealing at 400 °C, 500 °C and 600 °C for 4 h in air, the coated specimens were evaluated by X-ray diffraction analyses, surface morphology observations, scratch tests, dynamic polarization tests, immersion tests and cell culture assays. In addition to corrosion resistance, the adhesion strength of electrolytic deposited HA on Ti alloy was dramatically improved from the critical scratch load 2 N to 32 N by adding the intermediate electrolytic deposition of ZrO2, which showed the strong bonding effects between Ti alloy substrate and HA coating. Based on the cell morphology and cell proliferation data, HA/ZrO2 double layers coating revealed the better substrate for the adhesion and proliferation of osteoblasts than the others. It was also found that the crystallization of HA had positive effect on the proliferation of osteoblasts.  相似文献   

10.
The surface characterization of titanium, titanium oxide and lithium titanate samples exposed to molten Li2CO3-Na2CO3, in the anodic conditions used in molten carbonate fuel cells, was carried out by X-ray Photoelectron Spectroscopy (XPS). Different elements were identified: Ti(IV), O(-II), Li(I) and Na(I). The amounts of adsorbed sodium and lithium carbonates, as well as inserted lithium were estimated by a semi-quantitative XPS analysis in layers of about 50 Å. A broadening of the Ti 2p3/2 peak was observed. This effect is probably caused by a distorsion of the Li2TiO3 lattice due to the incorporation of lithium within this structure. Li2TiO3 compound was detected by X-ray diffraction (XRD) on Ti, TiO2 as well as Li2TiO3 after treatment in the molten carbonate eutectic.  相似文献   

11.
《Materials Letters》2006,60(13-14):1575-1578
A simple sol–gel method was successfully developed for a hydroxyapatite (HA)/TiO2 double layer deposition on a pure titanium substrate. Phase formation, surface morphology, and interfacial microstructure were investigated by differential scanning calorimetry analysis (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The TiO2 layer was coated by a spin coating method at a speed of 1500 rpm for 15 s, followed by a heat treatment at 560 °C for 20 min. The HA film was subsequently spin coated on the outer surface at the same speed and then heat-treated at difference temperatures. Results indicated that the HA phase began to crystallize after a heat treatment at 580 °C; and the crystallinity increased obviously at a temperature of 780 °C. The HA film showed a porous structure and a thickness of 5–7 μm after the heat treatment at 780 °C. SEM observations revealed no delamination and crack at the interfaces of HA/TiO2 and TiO2/Ti. The HA film with a porous structure is expected to be more susceptible to the natural remodeling processes when it is implanted in a living body.  相似文献   

12.
A new method for deposition of nano sized titanium nitride on steels   总被引:1,自引:0,他引:1  
Active screen plasma nitriding is a new and common method for deposition of Iron nitride. Since techniques such as Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD) and Plasma Assisted Chemical Vapor Deposition (PACVD) are usually applied in order to deposit the titanium nitride and each of these methods has its own problems, in this research active screen plasma nitriding method was introduced as a novel approach for deposition of nano sized titanium nitride. H11 tool steel samples were coated by plasma nitriding method at 550 °C for 5, 7.5 and 10 h, using three gas mixtures consisted of H2/N2 = 3, 1 and 1/3. Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) were employed to investigate the coating properties such as grain size, layer thickness and chemical composition. Results showed that the proportion of H2 in the gas mixture was a crucial point in order to obtain a perfect coating. By increasing the coating time, the grain size and the layer thickness increased. XPS results showed that the coating was mainly consisted of TiN + TiN0.1 together with a small amount of TiO4.  相似文献   

13.
《Vacuum》2012,86(2):131-139
Active screen plasma nitriding is a new and common method for deposition of Iron nitride. Since techniques such as Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD) and Plasma Assisted Chemical Vapor Deposition (PACVD) are usually applied in order to deposit the titanium nitride and each of these methods has its own problems, in this research active screen plasma nitriding method was introduced as a novel approach for deposition of nano sized titanium nitride. H11 tool steel samples were coated by plasma nitriding method at 550 °C for 5, 7.5 and 10 h, using three gas mixtures consisted of H2/N2 = 3, 1 and 1/3. Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) were employed to investigate the coating properties such as grain size, layer thickness and chemical composition. Results showed that the proportion of H2 in the gas mixture was a crucial point in order to obtain a perfect coating. By increasing the coating time, the grain size and the layer thickness increased. XPS results showed that the coating was mainly consisted of TiN + TiN0.1 together with a small amount of TiO4.  相似文献   

14.
Sputter deposited single titanium (Ti) layer, and duplex Ti–TiO2 coating on austenitic type 304L stainless steel (SS) was prepared, and the corrosion performance was evaluated in nitric acid medium using surface morphological and electrochemical techniques. Morphological analysis using atomic force microscope of the duplex Ti–TiO2 coated surface showed minimization of structural heterogeneities as compared to single Ti layer coating. The electrochemical corrosion results revealed that, titanium coated 304L SS showed moderate to marginal improvement in corrosion resistance in 1 M, and 8 M nitric acid, respectively. Duplex Ti–TiO2 coated 304L SS specimens showed improved corrosion resistance as compared to Ti coating from dilute (1 M) to concentrated medium (8 M). The percentage of protection efficiency for base material increases significantly for duplex Ti–TiO2 coating as compared to single Ti layer coating. The oxidizing ability of nitric acid on both the coatings as well as factors responsible for improvement in protection efficiency are discussed and highlighted in this paper.  相似文献   

15.
Pure and Copper/Nitrogen (Cu/N)-codoped TiO2 photoanodes with various Cu concentrations are prepared via sol–gel route for the photoanode application in dye-sensitized solar cells (DSSCs). All the prepared samples are characterized by X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), UV–Vis spectroscopy (UV–VIS) and Electrochemical Impedance Spectroscopy (EIS). Addition of suitable amount of Cu and N content in TiO2 can alter its optical and electrical properties by extending absorption in the visible region and band gap reduction. The results show that some of the Ti sites are replaced by Cu atoms while O sites are occupied by N atoms. Upon adequate addition of Cu/N could lead to smaller particle size, higher specific surface area, increased dye adsorption and retarded charge carrier recombination. A significant improvement in the power conversion efficiency is observed in case of optimized 0.3 mol% Cu/N-doped TiO2 nanoparticles (NPs) based DSSC. This optimized 0.3 mol% Cu/N-doped photoanode accomplished a best power conversion efficiency of 11.70% with a short circuit current density of 23.41 mA cm?2 which is 41% higher than that of the pure TiO2 photoanode based DSSC (6.82%).  相似文献   

16.
The solubility of titanium samples with different surface coatings, i.e., hydroxylapatite (HA) powders, a two-layer coating of ZrO5+HA on a titanium substrate in solution and of tooth implants after long-term functioning in the human organism, was studied. A minimum difference in solubility of titanium samples with different surface finishes (polished or grit blasted) was established. For the HA powders and coatings, the lowest solubility was observed with a coarse-grained HA–B powder and a coating made of that powder. Clinical tests of tooth implants after long implantation times were performed. A titanium implant (implantation 12 y), a titanium implant with a two-layer coating of ZrO5+HA–A (implantation time 4 y) and a titanium implant with a two-layer coating of Al5O3+3% TiO2)+ HA–A (implantation time 6 y) were studied. The results show that the titanium surface and HA–A layers were dissolved. Nevertheless, after 6 y implantation, total removal of HA–A coating from that part of implant set into the bone, was not observed.  相似文献   

17.
The aim of this study was to demonstrate the relationship between the structural and corrosion properties of an ISO 5832-9 biomedical alloy modified with titanium dioxide (TiO2) layers. These layers were obtained via the sol–gel method by acid-catalyzed hydrolysis of titanium isopropoxide in isopropanol solution. To obtain TiO2 layers with different structural properties, the coated samples were annealed at temperatures of 200, 300, 400, 450, 500, 600 and 800 °C for 2 h. For all the prepared samples, accelerated corrosion measurements were performed in Tyrode’s physiological solution using electrochemical methods. The most important corrosion parameters were determined: corrosion potential, polarization resistance, corrosion rate, breakdown and repassivation potentials. Corrosion damage was analyzed using scanning electron microscopy. Structural analysis was carried out for selected TiO2 coatings annealed at 200, 400, 600 and 800 °C. In addition, the morphology, chemical composition, crystallinity, thickness and density of the deposited TiO2 layers were determined using suitable electron and X-ray measurement methods. It was shown that the structure and character of interactions between substrate and deposited TiO2 layers depended on annealing temperature. All the obtained TiO2 coatings exhibit anticorrosion properties, but these properties are related to the crystalline structure and character of substrate–layer interaction. From the point of view of corrosion, the best TiO2 sol–gel coatings for stainless steel intended for biomedical applications seem to be those obtained at 400 °C.  相似文献   

18.
Bioceramic hydroxyapatite/sodium titanate coating on sandblasted titanium substrate was fabricated by a three-step process. At first, the sandblasted titanium substrate was coated with a flake-like sodium titanate layer by alkali-heat treatment. In the second step, the alkali-heat treated titanium substrate was hydrothermal treated at 180 °C for 4 h with calcium solutions. In the third step, the hydroxyapatite (HA) coating was deposited onto the hydrothermal treated layer via electrochemical deposition method. The surface topography and roughness of the coatings were determined by field emission scanning electron microscope (FESEM) and a mechanical contact profilometer, respectively. The surface compositions were evaluated by X-ray diffraction (XRD), energy-dispersive X-ray spectrum (EDS), and X-ray photoelectron spectroscopy (XPS). The EDS, XPS, and XRD analysis confirm the presence of element Ca, Ca2+, and CaTiO3 on sodium titanate layer after hydrothermal treatment with Ca(NO3)2 solution, respectively. FESEM micrograph shows the rod/needle-shaped crystallites are highly densely packed on the calcium-ion-containing layer with an average size of ~50 nm in diameter. The results indicate that the sodium titanate layer containing Ca2+ ions possesses higher ability to induce HA formation compared with the pure sodium titanate layer. It is revealed that surface composition plays an important role in the electrochemical deposition of HA. The calcium-ion-containing layer probably makes the nucleation of HA easy and effectively promotes orientated growth of HA on flake-like sodium titanate surface. The sodium titanate layer possesses a lower corrosion current density and a higher corrosion potential than sandblasted-Ti substrate. The sodium titanate layer should act as a barrier to the release of metal ions from metallic substrate to physiological solutions and thus reducing the electrochemical reaction rate.  相似文献   

19.
Different electrode materials are prepared using fluoride doped tin oxide (FTO) electrodes modified with high area porous thin films of metal oxides containing gold nanoparticles. Three different metal oxides (TiO2, MgO and SnO2) have been assayed to this end. The effect of the metal oxide nature and gold loading on the structure and performance of the modified electrodes was examined by Scanning Electron Microscopy, Transmission Electron Microscopy, X-Ray Diffraction (XRD), Diffuse Reflectance Spectroscopy and electrochemical techniques. XRD measurements reveal that MgO electrodes present the smallest gold nanoparticles after the sintering step however, the electrochemical response of these electrodes shows important problems of mass transport derived from the high porosity of these materials (Brunauer Emmett Teller area of 125 m2/g). The excellent sintering properties of titania nanoparticles result in robust films attached to the FTO electrodes which allow more reliable and reproducible results from an electroanalytical point of view.  相似文献   

20.
The incorporation of silicon can improve the bioactivity of hydroxyapatite (HA). Silicon-substituted HA (Ca10(PO4)6−x (SiO4) x (OH)2−x , Si-HA) composite coatings on a bioactive titanium substrate were prepared by using a vacuum-plasma spraying method. The surface structure was characterized by using XRD, SEM, XRF, EDS and FTIR. The bond strength of the coating was investigated and XRD patterns showed that Ti/Si-HA coatings were similar to patterns seen for HA. The only different XRD pattern was a slight trend toward a smaller angle direction with an increase in the molar ratio of silicon. FTIR spectra showed that the most notable effect of silicon substitution was that –OH group decreased as the silicon content increased. XRD and EDS elemental analysis indicated that the content of silicon in the coating was consistent with the silicon-substituted hydroxyapatite used in spraying. A bioactive TiO2 coating was formed on an etched surface of Ti, and the etching might improve the bond strength of the coatings. The interaction of the Ti/Si-HA coating with human serum albumin (HSA) was much greater than that of the Ti/HA coating. This might suggest that the incorporation of silicon in HA can lead to significant improvements in the bioactive performance of HA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号