首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper discusses the friction and dry sliding wear behaviour of nano-zirconia (nano-ZrO2) filled bismleimide (BMI) composites. Nano-ZrO2 filled BMI composites, containing 0.5, 1, 5 and 10 wt.% were prepared using high shear mixer. The influence of these particles on the microhardness, friction and dry sliding wear behaviour were measured with microhardness tester and pin-on-disc wear apparatus. The experimental results indicated that the frictional coefficient and specific wear rate of BMI can be reduced at rather low concentration of nano-ZrO2. The lowest specific wear rate of 4 × 10−6 mm3/Nm was observed for 5 wt.% nano-ZrO2 filled composite which is decreased by 78% as compared to the neat BMI. The incorporation of nano-ZrO2 particles leads to an increased hardness of BMI and wear performance of the composites shows good correlation with the hardness up to 5 wt.% of filler loading. The results have been supplemented with scanning electron micrographs to help understand the possible wear mechanisms.  相似文献   

3.
This paper discusses the friction and wear properties of Cr:(Wx,N0.1) coatings with different tungsten contents. The Cr:(Wx,N0.1) coatings with x being in the range of 0-0.16 were deposited using unbalanced magnetron sputtering technology. The microstructures and mechanical properties of Cr:(Wx,N0.1) coatings have been characterized by SEM, TEM, X-ray diffraction (XRD), nanoindentation and adhesion techniques. The tribological properties of the coatings were investigated using an oscillating friction and wear tester under dry conditions. Indexable inserts with Cr:(Wx,N0.1) coatings were applied to turning AISI 1045 steel material by a lathe. Micron-drills with Cr:(Wx,N0.1) coatings were adopted in the ultra high speed (105 rpm) PCB through-hole drilling test. Experimental results indicate that the coating microstructure, mechanical properties and wear resistance vary according to the tungsten content. All the coatings crystallize in the BCC phase. Cr:(W0.06,N0.1)-coated tools showed the best wear resistance in 1045 steel turning and PCB through-hole drilling tests. The service life of Cr:(W0.06,N0.1)-coated tool is three times greater than that of an uncoated tool in PCB through-hole drilling test.  相似文献   

4.
In thermal barrier coatings (TBC), failure occurs near or at the interface between the metallic bondcoat and topcoat. On high temperature conditions, an oxide scale which is named thermally grown oxide (TGO) occurs along the bond/topcoat interface. For diminishing the creation of TGO, a dense coating with low residual stress and thermal stress buffer layer was preferable. High hardness ceramic coatings could be obtained by gas tunnel type plasma spraying, and the deposited coating had superior property in comparison with those deposited by conventional type plasma spray method. In this study, the gas tunnel type plasma spraying system was utilized to produce a zirconia/alumina functionally graded thermal barrier coating and discussed its physical and mechanical properties, thermal behavior and high temperature oxidation resistance of the coating are discussed. Consequently, the proposed system exhibited superior mechanical properties and oxidation resistance at the expenses of a slightly lower thermal insulating effect. This interlayer is preferred in order to minimize the detrimental effect of the phase transformation of gamma-Al2O3 to alpha-Al2O3.  相似文献   

5.
Alumina coatings on stainless steel substrate (SS304) were deposited by using atmospheric plasma spray technique with a feed stock of manually granulated and sieved nano Al2O3 powder. The hardness, sliding, and erosive wear of the nanostructured alumina coatings (NC) were investigated and compared with that of conventional alumina coatings (CC). Pin-on disc type sliding wear test on the alumina coatings (NC and CC) was performed with load varying from 30 N to 80 N at a sliding speed of 0.5 m/s. Pot type slurry erosion test of the coatings was conducted for different concentrations of Al2O3 and a mixture of Al2O3 and SiO2 slurry. The microstructural features of both NC and CC of alumina were characterized by using FE-SEM/EDS and SEM analysis to substantiate the failure of coatings due to wear. Wear and erosion resistance of nano alumina coating is better than the conventional alumina coating as observed in the present work. The bimodal structure of NC contributes for the enhanced wear resistance. The high fracture toughness of NC is due to suppression of cracks by partially melted particles in the coatings.  相似文献   

6.
Ballistic performance of different type of ceramic materials subjected to high velocity impact was investigated in many theoretical, experimental and numerical studies. In this study, a comparison of ballistic performance of 95% alumina ceramic and 10% zirconia toughened alumina (ZTA) ceramic tiles was analyzed theoretically and experimentally. Spherical cavity model based on the concepts of mechanics of compressible porous media of Galanov was used to analyze the relation of target resistance and static mechanical properties. Experimental studies were carried out on the ballistic performance of above two types of ceramic tiles based on the depth of penetration (DOP) method, when subjected to normal impact of tungsten long rod projectiles. Typical damaged targets were presented. The residual depth of penetration on after-effect target was measured in all experiments, and the ballistic efficiency factor of above two types ceramic plates were determined. Both theoretical and experimental results show that the improvement on ballistic resistance was clearly observed by increasing fracture toughness in ZTA ceramics.  相似文献   

7.
The influence of long-term ageing at 1000° C upon the mechanical strength of a commercial Mg-PSZ ceramic is investigated. The Weibull solution was used to measure the material reliability. The effects of sub-eutectoid ageing were related to the stability of the tetragonal phase. Grain boundaries are shown to often act as fracture origins, and to constitute a fracture-controlling population that is not significantly affected by high-temperature ageing.  相似文献   

8.
Aluminum based composites reinforced with B4C particles were prepared by cryomilling and subsequent hot pressing steps. The cryomilled powders dispersed with 5 wt.% or 10 wt.% B4C particles were hot pressed under a pressure of 600 MPa at 350 °C. Microstructural studies conducted on the composites indicated that homogeneous distribution of the B4C particles in the Al matrix and a good interface between them had been achieved. According to the results of reciprocating wear tests carried out by utilizing alumina and steel balls, wear resistance increased with increasing B4C particle content.  相似文献   

9.
Ceria stabilized zirconia powders with ceria concentration varying from 6 to 16 mol% were synthesized using spray drying technique. Powders were characterized for their particle size distribution and specific surface area. The dense sintered ceramics fabricated using these powders were characterized for their microstructure, crystallite size and phase composition. The flexural strength, fracture toughness and microhardness of sintered ceramics were measured. High fracture toughness and flexural strength were obtained for sintered bodies with 12 mol% of CeO2. Flexural strength and fracture toughness were dependent on CeO2 concentration, crystallite size and phase composition of sintered bodies. Correlation of data has indicated that the transformable tetragonal phase is the key factor in controlling the fracture toughness and strength of ceramics. It has been demonstrated that the synthesis method is effective to prepare nanocrystalline tetragonal ceria stabilized zirconia powders with improved mechanical properties. Ce-ZrO2 with 20 wt% alumina was also prepared with flexural strength, 1200 MPa and fracture toughness, 9.2 MPa√m.  相似文献   

10.
In the present investigation, EN31 steel alloy based composite material has been developed using zirconia toughened alumina as primary reinforcement material and Ni powder as secondary reinforcement material. The weight percent of zirconia toughened alumina varied from 1.25 % to 10 %. While Ni powder weight percent has been kept uniform (2.5 %). The microstructure of the composite material developed showed uniform distribution of reinforcement particles. Results showed that wettability of zirconia toughened alumina particles improved by adding the nickel particles in EN31 steel alloy. Tensile strength and hardness after the heat treatment were found to be 899 MPa and 120.12 BHN respectively for EN31/6.25 wt.% zirconia toughened alumina/2.5 wt.% nickel composite material. Results showed that tensile strength and hardness of EN31 steel alloy improved about 46.17 % and 100.20 % respectively after adding 6.25 % zirconia toughened alumina and 2.5 % nickel powder. However, ductility reduced by adding the zirconia toughened alumina and nickel powder in EN31 steel alloy. The Finite element analysis has also been carried out to predict the deformation and damage behavior of investigated material during tensile test process. In addition, Brinell hardness test process finite element analysis model is also developed. The finite element analysis results are in good agreement with experimental results with 5 % of percentage difference.  相似文献   

11.
In this work, plasma electrolytic oxidation coating was formed on aluminium alloy in a cheap and inexpensive electrolyte to improve its wear resistance. It was found the micro-hardness of coatings increased first and then decreased with increasing the oxidised time. It was showed that the specimen treated under the time of 35 minutes exhibited the highest micro-hardness and lowest wear loss. The surface and cross-sectional morphology indicated that the coatings have a dense structure with low porosity. The presence of wear scars on the worn surface morphology demonstrates that the three-body rolling was the main wear mechanism for coated specimen. X-ray diffraction results showed the coating was formed mainly from α-Al2O3 and γ-Al2O3.  相似文献   

12.
Carbon nanotubes (CNTs) grafted on fibres are widely used to reinforce composites in order to improve their mechanical properties. This study concerned the tribological properties of CNTs grafted on carbon fibres by the flame method. The aim of this study was to determine whether CNTs on fibres suffer damage under stress, similar to those applied during composite manufacturing, which can damage composite properties, particularly fibre/matrix adhesion. For this purpose, reciprocating friction tests were performed to examine the resistance of CNTs and highlight a wear mechanism. The results showed that the presence of CNTs increased the coefficient of friction in the first friction cycles and then decreased it to close to the COF of the fibre without CNTs. The wear mechanism showed that after a small number of friction cycles, the CNTs were flattened out and formed a transfer film.  相似文献   

13.
Study of wear behaviour of sintered low alloy steels is required to ascertain their applications for wear resistance. In the present work the influence of copper and molybdenum on wear behaviour of plain carbon steel (Fe–0.5%C) using pin-on-disk arrangement has been addressed. Atomized iron (Fe), graphite (C), copper (Cu) and molybdenum (Mo) elemental powders were suitably weighed and thoroughly mixed in a pot mill to yield the alloy powders of Fe–0.5%C, Fe–0.5%C–2%Cu and Fe–0.5%C–2%Mo. Admixed alloy powders were then compacted and sintered for obtaining preforms of aspect ratio (height/diameter) 1.3 and diameter 25 mm. The sintered preforms were then hot extruded and subsequently machined to obtain wear test specimens of diameter 6 mm and height 50 mm. Using Design of Experiment software, the sliding wear experiments were planned and conducted on a pin-on-disk tribometer. It has been found that there is a substantial improvement in wear resistance of the P/M plain carbon steel by the addition Mo rather than Cu. However coefficient of friction is higher due to presence of hard microstructural phases. Delamination wear is found predominant for both the alloy steels. Empirical correlations for mass loss and coefficient of friction with respect to load/speed have been developed for the alloy steels.  相似文献   

14.
通过掺CaF2制得了Nd0.67(Sr,Ca)0.33Mn(O,F)3(NSMO)磁电阻材料,并对它们作了结构分析和磁性能测量。X射线衍射结果表明,NSMO化合物保持Nd0.67Sr0.33MnO3的钙钛矿结构,空间群为Pbnm,Z=4,F^离子占据8d位置,随着CaF2掺和量的增加,晶格常数减小,居里温度降低,而磁电阻性质呈明显的递增趋势。  相似文献   

15.
The photoelectron spectroscopy (PES) study compares electronic states in three different ceria thin film surfaces prepared on a Cu(111) single-crystal surface by vapour deposition under different conditions: at 250 °C, at room temperature and finally Au-doped ceria film obtained by simultaneous deposition of Au and CeO2 at room temperature (RT). Electronic properties of the layers and interaction of gold with CeO2 were investigated using synchrotron-radiation-excited PES and resonant photoemission (Ce 4d → 4f transitions). We observed partial Ce4+ → Ce3+ reduction induced by the decrease of deposition temperature to RT instead of 250 °C and also by doping ceria with gold, accompanied by a 4f resonance enhancement of the Ce3+ species. In the case of the Au-doped sample the surface reduction degree is stronger and can be explained by the possible creation of a new ionic Au+ state observed in the Au 4f spectra.  相似文献   

16.
Metal-matrix aluminium composites are satisfactory successor not only for steels, but also for aluminium-alloys in several automotive units and components. There are various paths to get light-weight materials with-out compromising their toughness, strength and safety demands. Tests on dry-sliding or un-lubricated pin-on-disc tests can be performed to obtain the wear-characteristics of metal-matrix composites built on aluminum. In the present study, we studied the behavior of wear resistance during sliding of metal matrix aluminium composites (AMMC) at sliding speeds of 1.5 m/s and loads of 20 N and 40 N in a normal environment, and experiments have been conducted using pin-on-disk tribometer (Make: DUCOM tribometer). The composites were manufactured by powder treatment and presented a number of problems, such as defective bonds and inter-facial product reactions, which alter the tribological and mechanical properties. The results have shown that wear-rates of the prepared composites are much lesser than those of matrix-alloy and decreased further with increasing silicon carbide content. As the normal loads increases, the cracks and combination of abrasions, delimitation and wear of the adhesives of silicon carbide particles were observed. The composite samples were studied using a scanning electron microscope before and after the wear tests and systematically analysed.  相似文献   

17.
La2/3Ca1/3Mn(O1—x,Fx)3的晶体结构和巨磁电阻特性   总被引:1,自引:0,他引:1  
对钙钛矿结构锰酸盐巨磁电阻材料进行了阴离子掺杂的研究。X射线衍射结果表明,La2/3Ca1/3M(O1-xFx)3化合物的空间媾和为Pbnm,Z=4,F^-离子占据8d位置,随着CaF2掺入量的增加,晶格常数和晶胞体积呈递减趋势。  相似文献   

18.
Few studies have focused on the interface fracture performance of bi‐layered structures, which have an important role in dental restorations, using ceramic materials. The purpose of this study is to evaluate the fracture mechanics performance of the Ni–Cr/ceramic, alumina/ceramic and zirconia/ceramic interfaces by investigating the propagation of an interfacial crack under a wide range of mode mixities. The effect of the mechanical properties of the base materials and the interface, on the crack initiation and crack path, will also be studied. The finite element method (FEM) was used to calibrate the production of the experimental specimens, allowing to obtain the minimum dimensions and amounts of material needed to correctly characterize the fracture event. The specimens were tested until failure using a three‐point bending test machine. The interface fracture parameters were obtained using the FEM. For all specimens, the cracks propagated into the ceramic. The results suggest that, in Ni–Cr/ceramic, alumina/ceramic and zirconia/ceramic bi‐layered structures, the ceramic is weaker than the interface, which can be used to explain the clinical phenomenon that the ceramic chipping rate is larger than interface delamination rate. Consequently, a ceramic material with a larger fracture toughness is needed to decrease the failure rate of ceramic restorations.  相似文献   

19.
A precursor for zirconia - 8 mole% yttria (YSZ-ZrO2-8 m% Y2O3) powder was prepared by coprecipitation and the calcination temperature was fixed as 900°C from TG-DTA and XRD studies. The calcined powder could be dry ground only to a mean particle size (D50) of 6 Μm containing substantial amount of coarse agglomerates in the size range 10–100 Μm. The dispersion conditions for its wet grinding were evaluated through zeta-potential and viscosity studies. The zeta-potential variation with pH of the aqueous suspensions of the powder exhibited maximum numerical values at 3 and 11 pH, exhibiting the ideal pHs for dispersion stability through electrostatic columbic repulsion mechanism. Slurries of dry ground powders with solid concentration in the range 15–30 vol.% exhibited pseudo-plastic flow characteristics, indicating presence of flocculates. With progress of grinding, the increase in viscosity of the slurries became less significant with decreasing solid concentration. Even though the particle size of the ground slurries decreased with decreasing solid content, there was little change in it for slurries with solid content < 20 vol.%. Grinding conditions for formation of sinter-active powders of YSZ with sub-micron size (D 50 ∼ 0.7 Μm free of agglomerates of size > 5 Μm) were established. Compacts from this powder could be sintered at 1400°C to translucent bodies with 99% theoretical density.  相似文献   

20.
A novel in situ reaction technique is developed to prepare TiC/7075 composites. This technique provides a new approach overcoming the problems of loss and agglomeration of reinforcement particles when they are in situ formed in a molten metal first and then injected into the spray cone of molten droplets during the spray forming process. Experimental results have shown that the presence of strip or rectangular-like Al3Ti, which is detrimental not only to the fracture toughness, but also to the stability of the microstructure, can be avoided completely from the final product by using a proper Ti:C molar ratio in the Ti-C-Al performs. The mechanisms of formation or absence of Al3Ti phase in the TiC/7075 composites are explained based on thermodynamics of the system. The modification of the microstructure of the spray-formed 7075 alloy can be understood in the light of atomic diffusion. The wear results showed that the wear rates of the spray-formed 7075 alloy and its composites increased with applied loads. At higher applied loads, the 7075 alloy exhibited superior wear resistance than that of the composites. This is attributed to increased microcracking tendency of the composites than the matrix alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号