首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparison of CFD analysis to empirical data in a commercial vortex tube   总被引:3,自引:0,他引:3  
This paper presents a comparison between the performance predicted by a computational fluid dynamic (CFD) model and experimental measurements taken using a commercially available vortex tube. Specifically, the measured exit temperatures into and out of the vortex tube are compared with the CFD model. The data and the model are both verified using global mass and energy balances. The CFD model is a two-dimensional (2D) steady axisymmetric model (with swirl) that utilizes both the standard and renormalization group (RNG) k-epsilon turbulence models. While CFD has been used previously to understand the fluid behavior internal to the vortex tube, it has not been applied as a predictive model of the vortex tube in order to develop a design tool that can be used with confidence over a range of operating conditions and geometries. The objective of this paper is the demonstration of the successful use of CFD in this regard, thereby providing a powerful tool that can be used to optimize vortex tube design as well as assess its utility in the context of new applications.  相似文献   

2.
This study discusses the effects of the heat exchanger type, refrigerant, inner tube configuration, and fin geometry on evaporator performance by adopting updated correlations of EVSIM, a numerical analysis model based on the tube-by-tube method developed by Domanski. The heat exchanger types considered are the cross-counter flow type and cross-parallel flow type. The refrigerants considered for the numerical test as a working fluid are R-134a, R-410A and R-22. For inner tube configuration, enhanced tube and smooth tube cases are considered. For the air side evaporation performance, heat exchangers using plate fins, wavy fins and slit fins are analyzed. Results show that the heat transfer rate of the cross-counter flow type heat exchanger is 3% higher than that of the cross-parallel flow type with R-22. The total heat transfer rate of the evaporator using R-410A is higher than those using R-22 and R-134a, while the total pressure drop of R-410A is lower than those of R-22 and R-134a. The heat transfer rate of the evaporator using enhanced tubes is two times higher than that using smooth tubes, but the pressure drop of the enhanced tube is 45–50% higher than that of the smooth tubes. The evaporation performance of slit fins is superior to that of plate fins by 54%.  相似文献   

3.
This study discusses the application of Taguchi method in assessing maximum temperature gradient for the Ranque–Hilsch counter flow vortex tube performance. The experiments were planned based on Taguchi's L27 orthogonal array with each trial performed under different conditions of inlet pressure, nozzle number and fluid type. Signal-to-noise ratio (S/N) analysis, analysis of variance (ANOVA) and regression analysis were carried out in order to determine the effects of process parameters and optimal factor settings. Finally, confirmation tests verified that Taguchi method achieved optimization of counter flow Ranque–Hilsch vortex tube performance with sufficient accuracy.  相似文献   

4.
5.
Air-conditioners use spirally coiled capillary tubes as an expansion device to enhance compactness of the unit. However, most empirical correlations for predicting refrigerant flow rate through capillary tubes were developed for straight capillary tubes without consideration of coiled effects. The objectives of this study are to investigate the flow characteristics of the coiled capillary tubes and to develop a generalized correlation for the mass flow rate through the coiled capillary tubes. The mass flow rate of R22 through the coiled capillary tubes and straight capillary tubes was measured for various operating conditions and tube geometries. The mass flow rates of the coiled capillary tubes decreased by 5–16% more than those of the straight capillary tubes at the same operating conditions. A generalized correlation for predicting refrigerant mass flow rate through coiled capillary tubes was developed by introducing the parameter of capillary equivalent length. The present correlation showed good predictions with the present database for R22, R407C and R410A in the straight and coiled capillary tubes, yielding average and standard deviations of 0.24% and 4.4%, respectively.  相似文献   

6.
Horizontal smooth and microfinned copper tubes with an approximate diameter of 9 mm were successively flattened in order to determine changes in flow field characteristics as a round tube is altered into a flattened tube profile. Refrigerants R134a and R410A were investigated over a mass flux range from 75 to 400 kg m−2 s−1 and a quality range from approximately 10–80%. For a given refrigerant mass flow rate, the results show that a significant reduction in refrigerant charge is possible. Pressure drop results show increases of pressure drop at a given mass flux and quality as a tube profile is flattened. Heat transfer results indicate enhancement of the condensation heat transfer coefficient as a tube is flattened. Flattened tubes with an 18° helix angle displayed the highest heat transfer coefficients. Smooth tubes and axial microfin tubes displayed similar levels of heat transfer enhancement. Heat transfer enhancement is dependent on the mass flux, quality and tube profile.  相似文献   

7.
It is well known that the presence of non-condensable gases inside a compression vapour refrigerating circuit introduces an additional thermal resistance at the condenser, which can significantly decrease the energy efficiency of the system. However, this problem so far has been investigated mainly for shell and tube condensers of large capacity and limited information is available on small systems, as is the case for household appliances where the internal volumes are extremely reduced and therefore a very small amount of non-condensable gas has large effect. Moreover, non-condensable gas behaves differently when condensation takes place outside tubes (shell and tube condensers) or inside tubes (condensers of small appliances); in the first case all heat transfer area is wrapped by a gas layer, whereas in the second case non-condensable gas is collected at the end of the tube. The effect of non-condensable gas in this work is experimentally investigated by injecting controlled amounts of air into a refrigerating circuit and by recording the thermal and electric variables during different modes of operation (steady state and cyclic running). The tested refrigerating circuits are part of two appliances on the market, a household refrigerator and a vertical freezer. The presence of non-condensable gas was found to spoil energy efficiency, since it brings about an increase in condensing pressure and a concomitant decrease in evaporating temperature, although larger liquid subcooling partially compensates for the first negative effects: the reason for this behaviour is the clogging action of bubbles of gaseous mixture (air and refrigerant vapour) that enter the capillary tube.  相似文献   

8.
A new way to assess the performance of refrigeration system models is presented in this paper, based on the estimation of cycle parameters, such as the evaporation temperature which will determine the validity of the method. This paper is the first of a series which will also study the influence of the heat transfer coefficient models on the estimation of the refrigeration cycle parameters. It focuses on fin and tube evaporators and includes the dehumidification process of humid air. The flow through the heat exchanger is considered to be steady and the refrigerant flow inside the tubes is considered one-dimensional. The evaporator model is discretised in cells where 1D mass, momentum and energy conservation equations are solved by using an iterative procedure called SEWTLE. This procedure is based on decoupling the calculation of the fluid flows from each other assuming that the tube temperature field is known at each fluid iteration. Special attention is paid to the correlations utilised for the evaluation of heat transfer coefficients as well as the friction factor on the air and on the refrigerant side. A comparison between calculated values and measured results is made on the basis of the evaporation temperature. The experimental results used in this work correspond to an air-to-water heat pump and have been obtained by using R-22 and R-290 as refrigerants.  相似文献   

9.
Hydrocarbons are one of the candidates for refrigerants of next generation heat pump and refrigeration systems. Although the hydrocarbons have superior thermophysical properties as a refrigerant to fluorocarbons and are widely used in domestic refrigerators, their flammability prevents their wide application to larger systems, such as residential and packaged air conditioners, car air conditioners, heat pumps, etc. In this paper, recent studies on condensation of hydrocarbons are reviewed since it is one of the key technologies. For in-tube condensation, heat transfer coefficients of smooth tubes are correlated well with previously proposed equation developed with data of the fluorocarbons. On the other hand, few data are available for enhanced tubes. In the case of condensation on a horizontal tube, heat transfer of smooth tube is explained well by the Nusselt theory. However, different heat transfer characteristics appear for enhanced tubes. Since blended hydrocarbons would be used to obtain suitable properties, models of mixed vapor condensation are also reviewed.  相似文献   

10.
A simulation and design tool to improve effectiveness and efficiency in design, and analysis of air to refrigerant heat exchangers, CoilDesigner, is introduced. A network viewpoint was adopted to establish the general-purpose solver and allow for analysis of arbitrary tube circuitry and mal-distribution of fluid flow inside the tube circuits. A segment-by-segment approach within each tube was implemented, to account for two-dimensional non-uniformity of air distribution across the heat exchanger, and heterogeneous refrigerant flow patterns through a tube. Coupled heat exchangers with multiple fluids inside different subsets of tubes can be modeled and analyzed simultaneously. A further sub-dividing-segment model was developed in order to address the significant change of properties and heat transfer coefficients in the single-phase and two-phase regime when a segment experiences flow regime change. Object-oriented programming techniques were applied in developing the program to facilitate a modular, highly flexible and customizable design platform and in building a graphic user-friendly interface. A wide variety of working fluids and correlations of heat transfer and pressure drop are available at the user's choice. The model prediction with CoilDesigner was verified against experimentally determined data collected from a number of sources.  相似文献   

11.
The objectives of this paper are to investigate the effect of surface roughness of micro-hatching tubes on the absorption performance and to develop an experimental correlation of Nusselt number as a function of the roughness. Two different micro-scale hatched tubes and a bare tube are tested to quantify the effect of the surface roughness on the absorption performance. The roughness of the micro-scale hatched tubes ranges 0.386–11.359 μm. The working fluid is H2O/LiBr solution with inlet concentration of 55, 58 and 61 wt.% of LiBr. The absorber heat exchanger consists of 24 horizontal tubes in a column, liquid distributor at the liquid inlet and the liquid reservoir at the bottom of the absorber. It was found that absorption performance of micro-hatching tubes was improved up to two times compared with the bare tube. An experimental correlation of Nusselt number was developed as a function of the film Reynolds number and the roughness with an error band of ±25%.  相似文献   

12.
The potential of winglet type vortex generator (VG) arrays for air-side heat transfer enhancement is experimentally evaluated by full-scale wind-tunnel testing of a compact plain-fin-and-tube heat exchanger. The effectiveness of a 3VG alternate-tube inline array of vortex generators is compared to a single-row vortex generator design and the baseline configuration. The winglets are placed in a common-flow-up orientation for improved tube wake management. The overall heat transfer and pressure drop performance are assessed under dry-surface conditions over a Reynolds number range based on hydraulic diameter of 220 ≤ Re ≤ 960. It is found that the air-side heat transfer coefficient increases from 16.5% to 44% for the single-row winglet arrangement with an increase in pressure drop of less than 12%. For the three-row vortex generator array, the enhancement in heat transfer coefficient increases with Reynolds number from 29.9% to 68.8% with a pressure drop penalty from 26% at Re = 960 to 87.5% at Re = 220. The results indicate that vortex generator arrays can significantly enhance the performance of fin-tube heat exchangers with flow depths and fin densities typical to those used in air-cooling and refrigeration applications.  相似文献   

13.
Experimental data were taken to examine R-410A mass flow rate characteristics through short tube restrictors at upstream pressures approaching the critical point. Four short tube restrictors were tested by varying upstream pressure from 2619 to 4551 kPa (corresponding to saturation temperature from 43.9 to 71.7 °C), upstream subcooling from 2.8 to 11.1 °C and downstream pressure from 772 to 1274 kPa. The experimental data were represented as a function of major operating parameters and short tube diameter. As compared to mass flow trends at typical upstream pressures, flow dependency on upstream subcooling was more significant at high upstream pressures due to a higher density change. Based on the database obtained from this study and literature, an empirical correlation was developed from a power law form of dimensionless parameters generated by the Buckingham Pi theorem. The post-predictions of the new correlation yielded average and mean deviations of 0.11 and 2.4%, respectively.  相似文献   

14.
Effects of fin height and helix angle on condensation inside a herringbone microfin tube have been experimentally investigated with five types of herringbone microfin tubes. Heat transfer coefficients are about 2–4 times higher than that of the helical microfin tube under high mass velocity conditions. In the low mass velocity, they are equal to that of the helical microfin tube. The heat transfer enhancement increases with fin height up to 0.18 mm; higher fin heights show enhancement values similar to the 0.18 mm results. Pressure drop increases with the fin height. Larger helix angle yields higher heat transfer and higher pressure drop. For the lowest fin and/or smallest helix angle, the pressure drop is comparable with that of the helical microfin tube, while the heat transfer enhancement is higher. The enhancement mechanism is discussed from flow pattern observations. Effect of mass transfer resistance for R410A is estimated and negligible effects have been proved.  相似文献   

15.
整流器对涡流管能量分离性能影响的研究   总被引:1,自引:0,他引:1  
设计加工了不同叶片角度的导流叶片形涡流管整流器。搭建了涡流管性能研究实验台。对整流器及其叶片角度对涡流管能量分离性能的影响,整流器对涡流管的长径比的影响进行了实验研究,并将白行设计加工的带有上述整流器的涡流管与ARTX公司生产的同类型涡流管进行了对比实验。实验结果表明:在涡流管末端加装上述整流器后,在冷流率为50%~80%时,涡流管的单位制冷量比不装整流器的涡流管提高了12%~44%;在实验研究的角度范围内,冷流率小于70%时,整流器叶片角度越大,制冷效果越好;加装整流器后,将涡流管的长径比由10.8降低到4.6,并且保持制冷效应不变;上述带整流器的涡流管在冷流率大于60%时,其制冷效应好于ARTX公司的同类型涡流管。  相似文献   

16.
为减少变径毛细管在R410A冷暖空调器应用中的匹配实验工作量,利用节流元件制冷剂流量测试台对多个结构尺寸规格的变径毛细管进行了R410A制冷剂流量测试,建立了基于阻抗计算方法的流量特性经验模型。利用该模型计算出KFR-32GW冷暖空调器所需变径毛细管的初步结构尺寸,并在该冷暖型空调器上进行精确匹配实验,确定最佳变径毛细管结构尺寸。实验结果表明:采用变径毛细管节流的空调器相对采用毛细管组件节流的空调器,制冷量减少0.3%,制冷能效比不变,制热量增加0.5%,制热能效比减少0.3%,两者的性能指标基本相同。因此变径毛细管可以代替毛细管组件应用于R410A冷暖空调器,且通过实验方法建立的变径毛细管R410A制冷剂流量特性经验模型精度较高,可以满足实际工程应用。  相似文献   

17.
A new program was developed to analyze the heat transfer characteristics of fin and tube evaporators that use a zeotropic mixture refrigerant, R-407C, as the working fluid. The calculation algorithm is based on EVSIM (NIST), but a tube is segmented into several sections to provide a base unit for the calculations in this study. Therefore, two-dimensional air mal-distribution in the tube-length (horizontal) and vertical directions of the evaporator can be considered. The temperature gradient in the flow direction is traced using a discrete pattern to simulate the continuous variation found in actual evaporators. To validate the simulation results, 45 test cases in a real evaporator were performed with two different refrigerant flow path configurations using R-22 and R-407C refrigerants. The deviation between the simulations and test data was a maximum of 5.4%, and the trends were similar. The local heat transfer predictions were verified by comparing the numerical and test wall temperatures along the refrigerant flow path. Local temperature difference and the heat transfer contributions from each row are also analyzed along refrigerant flow path. And more, the impact of air mal-distribution is studied with two-dimensional four different types of velocity profiles and the significant difference in heat transfer is analyzed. The program developed in this study will be a useful tool to know all of information related with heat and mass transfer at any local point and can be used for improving the efficiency of zeotropic mixture refrigerant evaporators.  相似文献   

18.
Because of the ozone layer depletion and global warming, new alternative refrigerants are being developed. In this study, evaporation heat transfer characteristic and pressure drop of carbon dioxide flowing upward in vertical smooth and micro-fin tubes were investigated by experiment with regard to evaporating temperature, mass flux and heat flux. The vertical smooth and micro-fin tubes with outer diameter (OD) of 5 mm and length of 1.44 m were selected as a test section to measure the evaporative heat transfer coefficient. The tests were conducted at mass fluxes from 212 to 530 kg/(m2 s), saturation temperatures from −5 to 20 °C and heat fluxes from 15 to 45 kW/m2, where the test section was heated by a direct heating method. The differences of heat transfer characteristics between the smooth and the micro-fin tubes were analyzed with respect to enhancement factor (EF) and penalty factor (PF). Average evaporation heat transfer coefficients for the micro-fin tube were approximately 111–207% higher than those for the smooth tube at the same test conditions, and PF was increased from 106 to 123%.  相似文献   

19.
Convective boiling heat transfer experiments were performed in horizontal minichannels with binary mixture refrigerant, R-410A. The test section is made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm and with lengths of 1500 mm and 3000 mm, respectively, and is uniformly heated by applying electric current directly to the tubes. Local heat transfer coefficients were obtained for a heat flux range of 10–30 kW m−2, a mass flux range of 300–600 kg m−2 s−1, and quality ranges of up to 1.0. The experimental results were mapped on Wang et al.'s (C.C. Wang, C.S. Chiang, D.C. Lu, Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube, Experimental, Thermal and Fluid Science 15 (1997) 395–405) and Wojtan et al.'s (L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: part I – a new diabatic two-phase flow pattern map, International Journal of Heat and Mass Transfer 48 (2005) 2955–2969) flow pattern maps to observe the flow regimes. Laminar flow appears in flow with minichannels. A new boiling heat transfer coefficient correlation based on the superposition model for R-410A was developed with 11.20% mean deviation; it showed a good agreement between the measured data and the calculated heat transfer coefficients.  相似文献   

20.
A model for absorption of water vapor into aqueous LiBr flowing over a horizontal smooth tube is developed. The flow is divided into three regimes: (1) falling film in contact with the tube, (2) drop formation at the bottom of the tube, and (3) drop fall between the tubes. Governing equations are formulated for each flow regime, and the variations of solution temperature, LiBr mass fraction, mass absorption rate and heat transfer rate are discussed including the effect of inlet subcooling. It is shown that the temperature variation across the film exhibits a nonlinear profile near the top of the tube and this effect leads to the necessity of a two-dimensional formulation in the falling film regime for accurate prediction. As has been observed previously, the mass fraction boundary layer at the vapor/liquid interface is found to be very thin and this explains the low absorption flux. The model predicts that significant absorption takes place in the drop formation regime with a considerable variation of temperature and mass fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号