首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
以甲基丙烯酸(MAA)和丙烯腈(AN)为单体,通过加热结合超声的方法引发反应,快速制备了不同单体配比的聚甲基丙烯酰亚胺(PMI)泡沫。通过傅里叶变换红外光谱、热重分析、动态力学热分析、垂直燃烧、极限氧指数(LOI)和扫描电镜对PMI泡沫结构、热性能、燃烧性能和形貌进行表征,同时对PMI泡沫的力学强度进行分析。结果表明,高温下氰基与羧基通过重排异构化反应生成酰胺键,制备的PMI泡沫具有良好的成炭性能和较高的玻璃化转变温度,LOI随AN含量的增加而提高,泡沫呈蜂窝状结构,孔径在0.1~0.3 mm之间。力学性能分析表明,PMI泡沫具有较高的力学强度,50.1 kg/m 3的PMI泡沫的拉伸强度、弯曲强度和压缩强度分别为1.85 MPa、2.71 MPa和3.74 MPa。  相似文献   

2.
以甲基丙烯酸(MAA)和丙烯腈(AN)为单体,以偶氮二异丁腈(AIBN)为引发剂,以有机改性蒙脱土(OMMT)为填料,通过单体原位插层聚合的方法,制备了聚甲基丙烯酰亚胺/有机蒙脱土(PMI/OMMT)泡沫。通过傅里叶变换红外(FT-IR)和X射线衍射(XRD)对OMMT的结构进行表征,通过热重分析(TGA)、动态力学热分析(DMA)、垂直燃烧、极限氧指数(LOI)和扫描电镜(SEM)对PMI/4OMMT泡沫热性能、燃烧性能和形貌进行表征,同时对PMI/4OMMT泡沫的力学强度进行分析。结果表明,十六烷基三甲基溴化胺(CTMAB)插层进入钠基蒙脱土(Na-MMT)层间,使层间距由1.25nm增加到2.20nm。制备的PMI/4OMMT泡沫具有良好的成炭性能和较高的玻璃化转变温度,OMMT的加入提高了PMI/4OMMT泡沫的LOI,泡沫呈蜂窝状结构,孔径在0.1~0.4mm之间。力学性能分析表明,PMI/4OMMT泡沫具有较高的力学强度,PMI60/4OMMT泡沫的拉伸强度、弯曲强度和压缩强度分别为1.45MPa、2.11MPa和3.15MPa。  相似文献   

3.
通过对精制后的碱木质素进行羟甲基化改性,利用改性后的碱木质素部分代替聚醚多元醇,利用一步发泡法制备碱木质素基聚氨酯泡沫材料,之后将膨胀石墨(EG)作为阻燃剂添加到碱木质素基聚氨酯泡沫材料制备出阻燃型生物质聚氨酯泡沫,通过极限氧指数(LOI)测试分析研究了阻燃型生物质聚氨酯泡沫材料的阻燃性能。通过借助热重分析(TGA)、锥形量热测试(CONE)和扫描电子显微镜(SEM)测试,分析研究了材料的热降解行为和成炭性能、燃烧行为和充分燃烧后残炭的表面形貌。分析结果表面,当羟甲基化后的碱木质素的添加量为聚醚多元醇的60%(质量分数)时,EG的添加量为30%(质量分数)时,制备出的阻燃型生物质聚氨酯泡沫的LOI值为30.1%,同时EG的加入降低了材料最大热降解速率,热释放速率和总热释放量,促进了材料的成炭,提高了材料的热稳定性,提高了材料的阻燃性能。  相似文献   

4.
以三聚氰胺(MEL)和苯基磷酸(PPA)为原料,合成出一种磷氮类阻燃剂——三聚氰胺苯基磷酸盐(MPP),采用核磁共振磷谱和红外光谱对其结构进行了表征。通过极限氧指数(LOI)、UL 94和锥形量热测试对MPP阻燃的硬质聚氨酯泡沫(RPUF)的燃烧性能进行了研究。结果表明,当MPP添加量为15%(质量分数)时,阻燃RPUF的LOI为27%,达到了UL 94V-0级,其热释放速率峰值(PHRR)相对于未阻燃RPUF降低了约44%。采用热重分析(TGA)研究了阻燃RPUF的热分解特性,结果表明,添加15%MPP的阻燃RPUF的压缩强度和弯曲强度分别比未阻燃RPUF提高了50%和27%。导热系数测试结果表明,添加15%MPP的阻燃RPUF的导热系数稍微有所增加,约为0.025 9 W/(m·K)。  相似文献   

5.
以聚苯氧基磷酸-2-10-氢-9-氧杂-磷杂菲基对苯二酚酯(POPP)为阻燃剂,对PC/ABS合金进行阻燃改性。通过极限氧指数(LOI)测试、垂直燃烧(UL-94)测试、热重分析(TGA)测试、锥形量热(CONE)测试和扫描电镜(SEM)测试等表征方法研究其阻燃性能。结果表明,当阻燃剂添加量为15%时可以达到UL94 V-0级,LOI值为21.1%;最大热释放速率(Pk-HRR)下降41.7%,热释放总量(THR)下降31.1%;TGA和SEM分析显示改性PC/ABS合金具有更好的成炭效果,燃烧后能促进表面生成致密多孔炭层,有效的隔绝氧气提高材料的阻燃性能。  相似文献   

6.
以聚苯氧基磷酸联苯二酚酯(PBPP)与聚磷酸铵(APP)组成膨胀阻燃体系(IFR),同时为提高抑烟性能将一定量蒙脱土(MMT)引入阻燃体系中。将此体系应用到环氧树脂(EP)的阻燃改性中,以间苯二胺(m-PDA)为固化剂制得阻燃改性EP材料。通过极限氧指数(LOI)、垂直燃烧(UL-94)、热重(TG/DTG)、锥形量热(CONE)和扫描电镜(SEM)分别探究了材料的阻燃性能、热降解行为、燃烧行为以及微观形貌。结果表明:5%IFR+1%MMT(wt,质量分数,下同)的阻燃剂可使EP达到UL 94V-0级;10%IFR+1%MMT可将极限氧指数提高到29.2%;同时,改性EP的燃烧性能得到很大提高,平均热释放速率(AvHRR)下降了52.0%,热释放速率峰值(PkHRR)下降了33.2%,总烟产生量(TSP)下降了70.0%;炭层形态研究显示,改性后的EP燃烧后能形成致密、封闭的炭层,能有效阻碍热量释放与烟雾扩散。  相似文献   

7.
利用有机杂环磷酸酯1, 2, 3-三(5, 5-二甲基-1, 3-二氧杂环己内磷酸酯基)苯(FR)、聚磷酸铵(APP)和三聚氰胺(MEL)制备新型无卤三源膨胀阻燃聚丙烯(IFR/PP)材料, 通过极限氧指数(LOI)、水平燃烧(UL-94)、热重分析法(TGA)、锥形量热(cone)等方法研究了IFR对聚丙烯阻燃性能影响。结果表明: 当IFR总添加质量分数为30%(FR∶APP∶MEL质量比为4∶8∶3), 阻燃IFR/PP的LOI 达到36.2%, 其热释放速率峰值(pk-HRR)、热释放速率平均值(av-HRR)、有效燃烧热平均值(av-EHC)、比消光面积平均值(av-SEA)、质量损失速率平均值(av-MLR)及一氧化碳释放率平均值(av-CO)相对未阻燃PP分别降低75.9%、71.7%、76.4%、74.6%、58.3%和50.0%, 300 s时CO释放量接近0, 呈现出良好的阻燃、抑烟和抑毒性能; SEM研究表明, IFR催化PP在燃烧初期形成了致密、坚硬的优质炭层。  相似文献   

8.
针对难以同时获得具有高阻燃性和高韧性聚乳酸(PLA)的现状,文中将聚磷酸铵和植酸钙复配形成膨胀阻燃剂加入到通过动态硫化法制备的韧性聚乳酸/不饱和聚酯共混物中(TPLA),详细研究了二者配比对TPLA阻燃性能、燃烧行为、热性能以及力学性能的影响。热重分析表明,该膨胀阻燃剂的引入并没有破坏TPLA的热稳定性,反而提高了其高温残炭量。极限氧指数(LOI)、垂直燃烧和锥形量热测试结果显示,该复配阻燃剂对TPLA表现出优异的阻燃性能,添加质量分数10%聚磷酸铵和5%植酸钙后,TPLA可以通过UL-94V-0级,LOI达到27%;与纯PLA相比,改性后TPLA的峰值热释放速率和总热释放分别下降57.5%和69.5%。力学测试结果表明,阻燃TPLA的断裂伸长率和缺口冲击强度相比聚乳酸有大幅上升,分别为聚乳酸的7.6倍和6.5倍。  相似文献   

9.
将聚硼硅氧烷(PB)阻燃剂分别与三种有机磷酸酯(OPP)阻燃剂进行复配,并将此复合阻燃剂添加到聚碳酸酯(PC)中制备了阻燃PC材料(FR-PC)。采用极限氧指数(LOI)和锥形量热分析研究了PB对OPP/PC体系的协效阻燃作用。结果表明,在阻燃剂总量为5%(质量分数)时,添加占阻燃剂总量25%(质量分数)以上的PB可以提高OPP/PC体系的LOI。PB阻燃剂具有促进成炭的作用,可使OPP/PC复合体系在燃烧过程中释放的烟、热以及CO有不同程度的降低,燃烧过程趋于平缓,尤其使体系的烟释放量显著降低,三种OPP/PC阻燃体系的总烟释放量分别下降30%~50%,大大降低了火灾的危害性。添加适量PB能够提高OPP/PC体系的拉伸强度、弯曲强度及维卡软化点温度,并且使PC复合阻燃材料的透光率有所提高,保持了PC良好的透明性。  相似文献   

10.
利用锥形量热仪(CONE)在35kW/m2热辐照条件下,并结合极限氧指数(LOI)和UL-94垂直燃烧测试方法对聚丙烯(PP)/聚醋酸乙烯酯(PVAc)-有机蒙脱土(OMMT)纳米复合材料和加入无卤复配阻燃剂制备的PP/PVAc-OMMT/氢氧化镁(MH)/三氧化二锑(AO)纳米复合阻燃材料的热释放速率、烟释放及材料在燃烧时的质量损失行为进行了研究。结果表明,添加10%(质量分数)PVAc-OMMT可以提高PP材料的阻燃性能,燃烧时的热释放速率、质量损失率以及烟释放量减少,且PVAc-OMMT与无卤复配阻燃剂之间可产生阻燃协效作用,使纳米复合阻燃材料的阻燃性能、热稳定性和抑烟性进一步增强。  相似文献   

11.
结构型阻燃剂对PMI泡沫塑料的阻燃改性   总被引:1,自引:0,他引:1  
以亚磷酸二甲酯、环氧氯丙烷为原料合成阻燃剂(3-氯-2羟基)丙基磷酸二甲酯(DMCPP),并用于PMI泡沫塑料的阻燃改性。通过傅里叶转变红外和核磁共振表征DMCPP的结构,用差示扫描量热法和热失重对阻燃泡沫塑料进行热分析,研究了DMCPP对PMI泡沫塑料阻燃性能、泡孔结构和力学性能的影响。结果表明,PMI泡沫塑料的分解温度和残炭率因DMCPP而提高,极限氧指数(LOI)随DMCPP用量增加而提高;10%DMCPP使80 kg/m~3的PMI泡沫塑料LOI达29.2%,泡孔增大32%,力学性能下降。  相似文献   

12.
范娟娟  闵样  杨吉  张永航  班大明 《材料导报》2021,35(10):10189-10196
本工作通过两步反应合成了一种磷杂菲类高效阻燃剂10-(2,5-二羟基二苯基)-10-氢-9-氧杂-10-磷杂菲-10-硫化物(DOPS-NQ),并将其用于环氧树脂(EP)的阻燃改性,探究了阻燃改性对EP材料阻燃性能、热性能及力学性能的影响.采用红外光谱(FTIR)和核磁共振确定了阻燃剂DOPS-NQ的结构,并通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TG)、锥形量热(CONE)测试了阻燃EP复合材料的阻燃性能和热性能.结果表明,在阻燃剂添加量较少的情况下,DOPS-NQ与聚磷酸铵(APP)复配时能够有效地抑制热量及烟气的释放,增大EP复合材料的LOI及残炭量.其中,当DOPS-NQ/APP的添加量为20%时,阻燃EP复合材料的LOI值增大到32.8%,锥形量热测试表明TSP和SPR分别减小了92%和91%,pHRR、THR、CO的释放量分别下降了81.6%、67.1%、93.3%,残炭量增加了46.5%,同时DOPS-NQ的加入也有助于提升EP复合材料的力学性能.  相似文献   

13.
本文以DOPO衍生物六(4-DOPO羟甲基苯氧基)环三磷腈(DOPOMPC)、聚磷酸铵(APP)以及三聚氰胺(MEL)形成复配膨胀体系(IFR)阻燃环氧树脂.采用极限氧指数(LOI)、水平、垂直燃烧(UL-94)方法研究了IFR体系对环氧树脂体系阻燃性能影响,通过锥形量热(CONE)研究了体系燃烧特性,通过扫描电子显微镜(SEM)对体系成炭情况进行观察.结果表明,IFR膨胀阻燃体系对环氧树脂具有良好的协同阻燃作用,其中8%DOPOMPC/8%APP/4%MEL(EP3)体系LOI值较纯EP(EP0)提高37.8%;各项燃烧参数也得到了改善,热释放速率峰值(pk-HRR)、有效燃烧热平均值(av-EHC)、比消光面积平均值(av-SEA)及一氧化碳释放速率平均值(av-CO)相对于10%DOPOMPC/10%APP/EP(EP1)分别降低了53.8%、84.4%、57.7%和75.8%;拉伸强度、弯曲强度和冲击强度较EP1分别提高了1.3倍、79.4%和2.5倍;宏观拍摄和扫描电镜结果表明EP3膨胀炭层连续、均匀、致密,阻燃效果良好.  相似文献   

14.
采用乙烯基封端硅氧烷(DMSV05)和9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)加成反应后的低聚物(DMSDOPO)为阻燃剂,制备了半透明增韧阻燃型环氧树脂(EP)材料。通过垂直燃烧(UL-94)、极限氧指数(LOI)、万能材料试验机和热重分析研究了DMS-DOPO对EP阻燃性能、力学性能和热性能的影响;采用扫描电镜对LOI测试后炭层微观形貌进行了表征。DMS-DOPO的引入可明显提高EP的阻燃性能、力学性能和高温残留量。与EP相比,EP/DMS-DOPO-10%拉伸强度和断裂伸长率分别提高9.6%和35.6%。DMS-DOPO质量分数为10%和15%时,EP的LOI值由22.5分别升高到27.5和30.3。EP/DMS-DOPO-15%具有最佳LOI值,600℃残留量比EP高23.3%,燃烧过程中可形成内部结构疏松多孔、外表面连续致密的膨胀炭层。EP/DMS-DOPO-15%具有最优综合性能。  相似文献   

15.
合成了一种含磷酚醛型环氧树脂固化剂DCPD-DOPO,通过红外光谱和核磁共振谱对其化学结构进行了表征,采用凝胶渗透色谱测量了其相对分子质量。以DCPD-DOPO、苯酚型酚醛树脂(PF8020)或其复合物为固化剂,双酚A环氧树脂(DGEBA)为基料,制备了不同磷含量的阻燃环氧树脂。通过热重分析、差示扫描量热分析研究了环氧树脂固化物的热性能和阻燃性能;通过极限氧指数(LOI),垂直燃烧实验和锥形量热法研究了固化后环氧树脂固化物的燃烧特性。结果表明,DCPD-DOPO固化的环氧树脂的LOI可达31.6%,垂直燃烧性能达到UL94 V-0级,玻璃化转变温度(T_g)为133℃。采用DCPD-DOPO与PF8020复合物固化的环氧树脂的T_g提高到138℃以上,LOI值略有降低,但仍能通过UL 94V-0测试。DCPD-DOPO与PF8020添加DCPD-DOPO后,复合固化的环氧树脂的热释放速率峰值及总释热量较PF8020固化的环氧树脂大幅度降低。此外,还用Kissinger法对环氧树脂固化反应动力学进行了研究。  相似文献   

16.
以二氨基二苯甲烷(DDM)和聚磷酸铵(APP)为原料,通过离子交换反应合成二氨基二苯甲烷改性聚磷酸铵(DDP),利用傅里叶变换红外光谱、核磁共振对DDP结构进行了表征。将DDP作为阻燃剂、DDM作为固化剂制备阻燃环氧树脂,通过极限氧指数仪、UL94垂直燃烧仪、锥形量热仪、热重分析和力学性能测试仪分别对阻燃环氧树脂的阻燃性能、成炭行为、热稳定性和力学性能进行了研究。结果表明,DDP在环氧树脂中表现出优异阻燃性能,添加15%的DDP可使环氧树脂的总释放热和峰值热释放速率下降32.3%和40.8%,LOI值达到37.1%并通过UL94 V-0级。热重分析表明,DDP有效增强了环氧树脂的成炭能力,当DDP质量分数为15%时,阻燃环氧树脂在800℃时的成炭量达到34.0%。力学性能分析表明,相同添加量的DDP相比于APP能赋予环氧树脂更佳的力学性能,其中15%DDP阻燃环氧树脂的拉伸强度达到35.9 MPa、弹性模量达到3844.7 MPa。  相似文献   

17.
用六氯环三磷腈(HCCP)对可膨胀石墨(EG)进行改性,所得改性可膨胀石墨(EGP)用于硬质聚氨酯泡沫(RPUF)的阻燃处理。利用红外光谱、热重分析和扫描电镜表征EGP的结构特征。利用万能试验机、极限氧指数(LOI)和锥形量热(CONE)研究了EGP对RPUF力学性能和阻燃性能的影响,通过扫描电镜和热重分析研究了RPUF样品燃烧后残炭的微观形貌和阻燃机理。分析结果表明,随着EG或EGP添加量的增加其LOI随之增加,在相同添加量的情况下RPUF/EGP的LOI最高,且其力学性能优于RPUF/EG的力学性能;由于EGP促使RPUF分解产生更加致密坚固的炭层,所以RPUF/EGP的点燃时间比RPUF/EG推迟了4s,其热释放速率峰值、总的热释放量、烟释放速率峰值和总的烟释放量分别比RPUF/EG降低了9.1%、5.9%、19.0%和33.8%,EGP表现出优于EG的阻燃抑烟性能。  相似文献   

18.
将无卤膨胀阻燃剂六(4-DOPO羟甲基苯氧基)环三磷腈(DOPOMPC)、聚磷酸铵(APP)及多壁碳纳米管(MWCNTs)复配后加入环氧树脂(EP)中,制备出新型阻燃复合材料DOPOMPC-APP-MWCNTs/EP。通过极限氧指数(LOI)、水平垂直燃烧和锥形量热法研究其阻燃性能。研究结果表明:MWCNTs的加入增强了膨胀阻燃体系的阻燃性能和力学性能,并在一定程度上改善了体系燃烧时的浓烟现象。当阻燃体系总质量分数为20%,MWCNTs质量分数为2%时,材料性能最优,其LOI达到36.8%,热释放速率峰值、有效燃烧热平均值、比消光面积平均值和CO释放率平均值与未阻燃EP相比分别下降了83.5%、31.5%、47.6%、50.0%,与DOPOMPCAPP/EP相比下降了83.5%、77.7%、83.7%、68.9%。SEM分析表明:添加MWCNTs后,燃烧炭层呈现出大面积交联网络状结构。  相似文献   

19.
以阻燃齐聚物(PSPTR)和酚醛树脂(PF)作为膨胀型阻燃剂(IFR)阻燃丙烯晴-丁二烯-苯乙烯共聚物(ABS), 通过极限氧指数(LOI)和水平垂直燃烧(UL-94)测试研究了阻燃PSPTR-PF/ABS体系的阻燃性能。研究表明, 当PSPTR:PF=1:1(质量比), 总质量分数为30%时, 体系的LOI为28.2%, UL-94达V-1级别。采用热重-红外联用(TG-IR)技术探索了阻燃体系的热性能和热分解历程, 发现PSPTR-PF阻燃剂的加入延缓了ABS的热分解, 提高了ABS的热稳定性能。采用SEM、 XRD和Raman光谱分析了燃烧炭层的形貌和结构。结果表明, PF不仅改善了炭层的致密度, 而且完善了炭层的石墨结构, 最终提高了ABS的阻燃性能。  相似文献   

20.
将聚硼硅氧烷(PB)阻燃剂分别与三种有机磷酸酯(OPP)阻燃剂进行复配, 并将此复合阻燃剂添加到聚碳酸酯(PC)中制备了阻燃PC材料(FR-PC)。采用极限氧指数(LOI)和锥形量热分析研究了PB对OPP/PC体系的协同阻燃作用。结果表明: 阻燃剂总质量分数为5%时, 添加质量分数1.25%以上的PB可以提高OPP/PC体系的LOI; PB阻燃剂具有促进成炭的作用, 可使OPP/PC复合体系在燃烧过程中释放的烟、热以及CO有不同程度的降低, 燃烧过程趋于平缓, 尤其使体系的烟释放量显著降低, 三种OPP/PC阻燃体系的总烟释放量下降31.8%~51.0%, 大大降低了火灾的危害性; 添加适量PB能够提高OPP/PC体系的拉伸强度、弯曲强度及维卡软化点温度, 并且使PC复合阻燃材料的透光率有所提高, 保持了PC良好的透明性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号