首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决核电水循环系统中鼓型旋转滤网驱动装置的耐腐蚀问题,本文研究了碳纤维和聚四氟乙烯微粉改性的聚醚醚酮复合材料在干摩擦、水润滑和油润滑条件下的摩擦磨损性能.通过机械共混、高温模压的方法,制备了不同质量分数的聚四氟乙烯(PTFE)微粉/碳纤维(CF)/二硫化钼(MoS_2)/聚醚醚酮(PEEK)复合材料.采用拉伸试验机和塑料洛氏硬度计测试其力学性能,采用摩擦磨损试验机测试了复合材料在干摩擦、水润滑和油润滑条件下的摩擦磨损性能,采用扫描电子显微镜对其摩擦表面形貌进行分析.结果表明:复合材料在水润滑和油润滑时摩擦系数及磨痕宽度均较小,但水润滑时摩擦系数波动幅度较大且磨痕宽度略高;复合材料在干摩擦条件下的磨损机制以磨粒磨损为主,伴有疲劳磨损,油润滑时摩擦面可形成连续的润滑膜而保持光滑,水润滑时水流冲刷破坏了摩擦面上固体润滑膜的稳定性;CF质量分数增加时,复合材料的洛氏硬度和压缩强度递增,压缩强度达到164 MPa,PTFE微粉质量分数增加时,复合材料的洛氏硬度和压缩强度递减;CF质量分数增加时,复合材料的干摩擦系数及磨痕宽度下降,PTFE微粉质量分数增加时,复合材料的干摩擦系数下降,达到0.17.  相似文献   

2.
利用球盘式摩擦磨损试验机考察了玻璃纤维(GF)增强聚醚醚酮(PEEK)复合材料在干摩擦和水润滑条件下的摩擦磨损性能,并探讨了其磨损机理。结果表明:在干摩擦和水润滑条件下,PEEK和GF/PEEK的摩擦因数和磨损率均随载荷和对磨时间的增加逐渐增大并趋于稳定,GF的加入可以显著降低GF/PEEK复合材料的摩擦因数和磨损率;在水润滑条件下,PEEK和GF/PEEK的摩擦因数和磨损率比干摩擦下显著降低。干摩擦下,PEEK以黏着磨损和磨粒磨损的混合磨损形式为主,水润滑条件下,磨损方式主要是以轻微的黏着磨损为主;干摩擦下,GF/PEEK磨损表面有大量的微观断裂裂纹和破碎,以磨粒磨损和疲劳磨损为主,水润滑条件下,磨损表面仅有微观切削的痕迹,磨损方式以轻微磨粒磨损为主。由于水的冷却和润滑作用,使得复合材料向对偶钢球的黏着转移明显减弱,同时阻止了对偶钢球上的Fe向复合材料磨损表面转移,从而减轻摩擦、降低摩擦表面温升,显著改善复合材料的摩擦磨损性能。  相似文献   

3.
将碳纤维(CF)和锡青铜粉(Cu)分别添加到聚四氟乙烯(PTFE)中制备了两种PTFE复合材料,并将其与42CrMo钢环形成摩擦副,研究了两种PTFE复合材料在干摩擦、水润滑和油润滑条件下的摩擦学性能,并用扫描电子显微镜观察了两种复合材料的磨损表面形貌,分析了磨损机理。结果表明:在干摩擦和油润滑条件下,随着碳纤维含量的增加,CF/PTFE复合材料的摩擦因数增大,磨痕宽度减小;两种PTFE复合材料在干摩擦条件下的摩擦因数最大,油润滑条件下的摩擦因数最小;而且在油润滑条件下,两种PTFE复合材料的磨痕宽度最小;水润滑条件下的摩擦因数比干摩擦的的要小,但磨痕宽度比干摩擦时的要大;CF/PTFE复合材料的磨损机理主要为疲劳磨损,犁沟形貌不明显;Cu/PTFE复合材料的磨损机理主要为磨料磨损,犁沟形貌明显,伴有疲劳磨损。  相似文献   

4.
炭纤维增强聚醚醚酮复合材料在水润滑下的摩擦学行为   总被引:4,自引:0,他引:4  
考察了炭纤维及PTFE增强PEEK复合材料在干摩擦和水润滑下的摩擦学性能,并研究了该复合材料在两种条件下的磨损机理.结果表明,干摩擦下复合材料的摩擦系数和磨损率随负荷的增加不断减小;水润滑下复合材料的摩擦系数随负荷的变化不大,磨损率随负荷的增加而增大.干摩擦下,复合材料的磨损以粘着磨损和磨粒磨损为主.水润滑条件下,磨损表面比较光滑,仅有微切削的痕迹,磨损方式以轻微磨粒磨损为主.干摩擦条件下,摩擦对偶表面仅有轻微的犁沟形成,表面形成一层薄而均匀且结合紧密的转移膜.水润滑下,对偶表面犁沟较深,犁削作用明显,转移膜的形成被明显抑制.水的冷却作用使得向摩擦对偶的粘着转移明显减轻,同时由于摩擦表面吸附水膜的边界润滑作用,显著改善复合材料的摩擦磨损性能.  相似文献   

5.
润滑条件下三维编织炭复合材料的摩擦学特性   总被引:1,自引:0,他引:1  
采用MM-200型摩擦磨损试验机研究了润滑条件下三维编织炭/环氧复合材料的摩擦磨损性能,探讨了载荷及滑动速度等外界因素的影响;并采用XL30 ESEM电子显微镜观察磨损表面形貌,分析了其磨损机理.结果表明,润滑条件下复合材料的摩擦磨损性能远优于干摩擦,且磨合期较短;随着载荷的增加,复合材料的摩擦系数和比磨损率降低,但滑动速度对摩擦磨损性能的影响很小;润滑条件下的磨损机理主要是磨粒磨损.  相似文献   

6.
聚四氟乙烯/碳纤维增强聚酰亚胺复合体系的摩擦学性能   总被引:6,自引:2,他引:4  
研究评价了不同PTFE含量的碳纤维增强P1复合材料的力学和摩擦学性能,并分析了在干摩擦和水润滑2种不同条件下的磨损表面形貌和磨损机理。研究表明:PTFE以10%添加时PI/CF/PTFE体系的机械性能最佳,而摩擦学性能以5%添加为佳;随PTFE含量的增加,复合材料的摩擦系数降低,磨损率增加。水润滑下,摩擦系数和磨损率比干摩擦下的都有相应的降低。干摩擦下,材料的磨损均以塑性变形、微观破裂及破碎为主导;水润滑下,这一机制显著减弱,归因于水的润滑和冷却作用。  相似文献   

7.
现有的Ni-W合金镀层摩擦磨损性能研究较少涉及镀层制备条件的影响。在不同电流密度下采用脉冲电沉积法在45钢表面制备了Ni-W合金镀层,测试了Ni-W合金镀层在干摩擦及油润滑摩擦条件下的摩擦磨损性能,并观察磨损形貌,分析其磨损机理。结果表明:在干摩擦状态下,随着电流密度增加,Ni-W合金镀层的磨损量逐渐降低,但摩擦系数逐渐升高,45钢的磨损主要是黏着磨损中的擦伤磨损,Ni-W合金镀层主要为磨粒磨损,个别存在少量疲劳磨损;在油润滑摩擦状态下,随着电流密度增加摩擦系数保持稳定,磨损量逐渐降低,Ni-W镀层与45钢的磨损形式均为磨粒磨损,45钢存在少量疲劳磨损。  相似文献   

8.
利用树脂传递模塑(RTM)工艺制备了三维编织炭纤维/环氧(C3D/EP)复合材料.采用MM-200型摩擦磨损试验机研究了该材料润滑条件下的摩擦磨损性能,探讨了载荷及滑动速度等外界因素的影响;并采用XL30 ESEM电子显微镜观察磨损表面形貌,分析了其磨损机理.结果表明,润滑条件下复合材料的摩擦磨损性能远优于干摩擦,且磨合期较短;随着载荷的增加,复合材料的摩擦系数和比磨损率降低,但滑动速度对摩擦磨损性能的影响很小;润滑条件下的磨损机理主要是磨粒磨损.  相似文献   

9.
碳纤维织物增强树脂基摩擦材料摩擦学性能研究   总被引:1,自引:0,他引:1  
采用2.5D浅交弯联碳纤维整体织物作为预制体,以酚醛树脂为基体,通过热压成型工艺制备了碳纤维整体织物结构增强树脂基复合材料。通过MST-3001摩擦磨损试验机分别考核了干式与湿式条件下复合材料的摩擦磨损性能;采用扫描电子显微镜(SEM)、3D激光扫描形貌仪观测了材料的表面形貌。结果表明,干式摩擦条件下,动摩擦系数波动范围0.12~0.26,随着转速的增加摩擦系数先降低后升高,随着载荷的增加摩擦系数变化不明显。湿式摩擦条件下,动摩擦系数波动范围0.08~0.13,随着转速和载荷的增加,摩擦系数降低。在连续摩擦状态,干式工况条件下动摩擦系数波动较大,湿式工况条件下动摩擦系数非常平稳。干式摩擦状态时,材料的主要磨损形式为磨粒磨损,而湿式摩擦时主要发生磨粒磨损和疲劳磨损。  相似文献   

10.
通过模压成型制备了碳纤维与空心微珠共混改性的聚酰亚胺复合材料, 采用MRH-3型摩擦磨损试验机研究了空心微珠含量、滑动速度及载荷对复合材料摩擦学性能的影响, 并对其磨损形貌及机制进行了分析。结果表明: 空心微珠-碳纤维/聚酰亚胺复合材料摩擦学性能优于其单独填充的聚酰亚胺基复合材料; 空心微珠含量对共混改性的复合材料摩擦系数影响不大, 但其磨损率随着空心微珠含量的增加先减小后增大; 15%空心微珠-10%碳纤维(质量分数)共混增强的复合材料的减摩耐磨性能最佳; 随着滑动速度提高, 空心微珠-碳纤维/聚酰亚胺复合材料的摩擦系数下降, 磨损率增大; 空心微珠-碳纤维/聚酰亚胺复合材料摩擦系数随着载荷增加先下降后上升, 而磨损率则随着载荷增加而增大; 空心微珠-碳纤维/聚酰亚胺的主要磨损机制在较低载荷时为磨粒磨损, 在较高载荷时为粘着磨损和磨粒磨损。  相似文献   

11.
通过模压成型制备了碳纤维与空心微珠共混改性的聚酰亚胺复合材料,采用MRH-3型摩擦磨损试验机研究了空心微珠含量、滑动速度及载荷对复合材料摩擦学性能的影响,并对其磨损形貌及机制进行了分析.结果表明:空心微珠-碳纤维/聚酰亚胺复合材料摩擦学性能优于其单独填充的聚酰亚胺基复合材料;空心微珠含量对共混改性的复合材料摩擦系数影响不大,但其磨损率随着空心微珠含量的增加先减小后增大;15%空心微珠-10%碳纤维(质量分数)共混增强的复合材料的减摩耐磨性能最佳;随着滑动速度提高,空心微珠-碳纤维/聚酰亚胺复合材料的摩擦系数下降,磨损率增大;空心微珠-碳纤维/聚酰亚胺复合材料摩擦系数随着载荷增加先下降后上升,而磨损率则随着载荷增加而增大;空心微珠-碳纤维/聚酰亚胺的主要磨损机制在较低载荷时为磨粒磨损,在较高载荷时为粘着磨损和磨粒磨损.  相似文献   

12.
纤维增强聚酰亚胺复合材料的摩擦学行为   总被引:1,自引:0,他引:1  
本文研究了碳纤维、玻璃纤维及石英纤维增强的PI复合材料在于摩擦和水环境下的摩擦磨损行为。研究表明,碳纤维增强PI复合材料在两种摩擦条件下的摩擦系数和磨损率都随碳纤维含量的增加而不断降低。而玻璃纤维和石英纤维增强PI复合材料的摩擦系数和磨损率则随纤维含量的增加而增大。材料的磨损均以塑性变形、微观破裂及破碎为主导,相同纤维种类和含量增强PI复合材料在水环境下的磨损率均较干摩擦下的低,这主要归因于摩擦副表面吸附或存留的水分的边界润滑作用。  相似文献   

13.
铸型尼龙及其复合材料的摩擦学性能和晶型转变   总被引:1,自引:0,他引:1  
利用 MM- 2 0 0摩擦磨损试验机研究了在干摩擦和水润滑条件下铸型尼龙 (MC尼龙 )及其复合材料的摩擦磨损性能 ,并利用红外光谱分析了材料在不同磨损条件下发生的物理化学变化。研究结果表明 ,在干摩擦条件下 ,当载荷与速度的积 (pv值 )小于 84 N.m/s时玻璃纤维增强 MC尼龙复合材料(GF/MC)的摩擦系数和磨损率都比 MC尼龙低 ;当 pv值大于 84 N.m/s时 ,GF/MC的摩擦系数略高于MC尼龙 ,而磨损率则远大于 MC尼龙 ,随 pv值的改变 ,磨损机理发生了变化。在水润滑条件下二者的摩擦系数降低 ,GF/MC的耐磨性比纯基体显著提高。光谱分析表明 ,MC尼龙及其复合材料在摩擦过程中会发生晶型转变 ,在干摩擦后 α晶型减少 ,γ晶型增多 ,在水润滑后 α晶型增多 ,而 γ晶型减少  相似文献   

14.
不同转速及载荷下炭/炭复合材料的摩擦磨损性能   总被引:1,自引:0,他引:1  
在MM-200型摩擦磨损试验机上,对3K炭布叠层结构的炭/炭(C/C)复合材料进行低能条件下的摩擦磨损实验,用扫描电子显微镜对其磨损表面形貌进行观察分析.结果表明:在于摩擦条件下,随转速增加,复合材料的摩擦系数降低,磨损量增大.随载荷增加,复合材料的摩擦系数降低,磨损量增大.摩擦初始时主要磨损机理为磨粒磨损和粘着磨损,润滑膜产生后主要磨损机理为疲劳磨损.炭/炭复合材料在低能条件下的磨损是正常磨损,其摩擦系数在0.1~0.2,温度在0~100℃之间.  相似文献   

15.
石国军  李翠  袁月 《复合材料学报》2016,33(9):1886-1898
为了提高聚四氟乙烯(PTFE)的摩擦学性能,采用机械混匀、带温预压及烧结等工艺制备了莫来石和碳纤维填充的PTFE基复合材料,并通过FTIR、XRD、万能材料试验机、洛氏硬度计、DSC及热机械分析分别表征了PTFE基复合材料的显微结构、力学性能和热学性能;然后,使用MRH-3 型高速环块磨损试验机测定了复合材料的摩擦系数和磨损率,通过自制的硅油砂浆磨损装置测定了复合材料在不同温度下的耐砂浆磨损性能;最后,借助3D测量激光显微镜研究了复合材料摩擦面形貌,并分析了摩擦磨损机制。结果表明:莫来石和碳纤维在PTFE体系中起到填充增强作用,20wt%莫来石-10wt%碳纤维/PTFE复合材料的弹性模量由364 MPa增加至874 MPa;20wt%莫来石-10wt%碳纤维/PTFE复合材料的干摩擦系数较大,但其磨损率与纯PTFE相比降低了3个数量级以上,且此复合材料在水摩擦条件下仍能保持较好的摩擦系数和磨损率,摩擦系数为0.157,磨损率为7.40×10-6 mm3·N-1·m-1;此外,20wt%莫来石-10wt%碳纤维/PTFE复合材料在较高温度下仍能表现出良好的耐砂浆磨损性能。所得结论表明改性得到的PTFE 基复合材料的摩擦学性能显著提高,复合材料可用于有杆抽油井防偏磨。   相似文献   

16.
通过添加聚苯酯对聚四氟乙烯(PTFE)材料进行改性,研究了改性后复合材料的力学性能及复合材料在干摩擦、油润滑条件下对铝合金和阳极氧化铝合金的摩擦磨损性能。结果表明:填充聚苯酯后,复合材料的拉伸性能下降,压缩性能、硬度升高,对铝合金和阳极氧化铝合金的摩擦磨损性能均有所改善,且复合材料与阳极氧化铝合金的摩擦磨损性能优于其对铝合金的摩擦磨损性能。  相似文献   

17.
采用电弧离子镀技术在45#钢衬底表面沉积了TiN薄膜.用显微硬度计测试了薄膜的硬度,用球一盘式摩擦磨损试验机评价了在不同测试条件下(干摩擦,水润滑,油润滑)TiN薄膜的摩擦学性能,用表面轮廓仪测试了磨痕处的磨痕轮廓,用配有能谱仪(EDS)的扫描电镜(SEM)观察和测试了磨痕形貌和磨痕处主要化学元素组成.结果表明,相对于干摩擦,水润滑和油润滑条件下,TiN薄膜的摩擦系数和磨痕深度都有明显降低的趋势.干摩擦条件下,薄膜表现为磨粒磨损和氧化磨损;水润滑条件下,薄膜表现为疲劳磨损,水对薄膜起到边界润滑作用;油润滑条件下,薄膜几乎无磨损,油起到流体润滑作用.  相似文献   

18.
稀土处理玻璃纤维填充PTFE复合材料的滑动磨损性能   总被引:5,自引:0,他引:5       下载免费PDF全文
研究了不同玻璃纤维表面处理对PTFE复合材料在干摩擦条件下滑动磨损性能的影响,并借助扫描电子显微镜(SEM)分析了磨损机理。结果表明:在干摩擦条件下,经表面处理玻璃纤维填充的PTFE复合材料的摩擦系数和摩擦表面温度比未经处理玻璃纤维填充的PTFE复合材料的低,且减磨性能优于未经处理的;而稀土处理玻璃纤维填充的PTFE复合材料的摩擦系数和摩擦表面温度最低,减磨性能最好;未经处理玻璃纤维填充的PTFE复合材料和偶联剂处理玻璃纤维填充的PTFE复合材料都发生了剧烈的粘着转移;偶联剂与稀土处理玻璃纤维填充的PTFE复合材料的磨损机理主要是明显的磨粒磨损;稀土处理玻璃纤维填充PTFE复合材料的磨损形式主要是粘着转移和轻微的磨粒磨损。  相似文献   

19.
用多功能SRV实验机评价了钢/钢摩擦副在干摩擦条件下的的高温减摩抗磨性能,并对高温磨损机理进行了探讨.结果表明,钢/钢摩擦副的高温摩擦系数随着实验负荷的增加呈下降趋势,而随着实验时间的延长呈增长趋势.钢/钢摩擦副的线接触高温摩擦系数明显比点接触时的高温摩擦系数大,SPHC/GCr15摩擦副的高温摩擦系数明显高于GCr15/GCr15摩擦副的高温摩擦系数.钢球在点接触条件下的磨损随实验负荷的增加呈线性增长趋势,而钢柱在线接触条件下的磨损随实验负荷的增加呈线性降低趋势.在相同负荷下,SPHC/GCr15摩擦副的磨损要较GCr15/GCr15摩擦副的磨损略微大.钢/钢摩擦副在高速度下的磨损机理主要是磨粒磨损,而在较低速度下主要是磨粒磨损和粘着磨损.  相似文献   

20.
王旭东  汪彩芬  朱彩强  严彪杰  黄大鹏  白彬 《材料导报》2017,31(Z1):463-466, 476
研究了3种核主泵用机械密封陶瓷材料(氮化硅、氧化铝和碳化硅)在室温干摩擦条件下及水润滑条件下分别与氮化硅陶瓷球对磨的摩擦磨损性能。研究结果表明,在与氮化硅球干摩擦的3种材料中氧化铝陶瓷具有最大的摩擦系数和最小的磨损质量,氮化硅具有最小的摩擦系数。在氮化硅陶瓷自配对摩擦副摩擦磨损试验中,水润滑条件下氮化硅摩擦系数及摩擦质量损失都有很大程度的减小,且摩擦系数随转速增加而减小。综合考虑力学性能和摩擦磨损性能,选择氮化硅陶瓷作为核主泵机械密封材料更合适。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号