首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
通过三步反应合成了一种新型具有高度扭曲构型的芳香二胺单体1,2-双(4-(4-氨基-2-三氟甲基苯氧基)苯基)-菲并[9,10-d]咪唑(PIPOTFA),将它与四种商业化二酐4,4′-六氟异丙基邻苯二甲酸酐(6FDA)、3,3′,4,4′-二苯醚四甲酸二酐(ODPA)、3,3′,4,4′-联苯四甲酸二酐(BPDA)和3,3′,4,4′-二苯甲酮四甲酸二酐(BTDA)通过高温一步法聚合制得了四种聚酰亚胺均聚物。这些聚酰亚胺在N-甲基吡咯烷酮(NMP)、N,N-二甲基乙酰胺(DMAc)和N,N-二甲基甲酰胺(DMF)等非质子极性溶剂中均具有良好的溶解性。热分析测试结果表明,这些聚酰亚胺具有优异的热稳定性,其玻璃化转变温度在265~290℃之间,氮气气氛下5%和10%热失重温度分别为517~561℃和547~587℃,700℃时的残炭率为60%~70%。这些聚酰亚胺薄膜呈淡黄色,在450nm处的透过率为11%~68%,截止波长为375~383nm。  相似文献   

2.
可溶性含羟基聚酰亚胺的制备及其性能研究   总被引:2,自引:0,他引:2  
合成了含羟基的二胺单体4,4′-二氨基-4″-羟基三苯甲烷(DHTM),并将该单体分别同六氟异叉丙基二苯四羧酸二酐(6FDA),3,3′,4,4′-二苯醚四羧酸二酐(ODPA)和4,4′,-二(4,4′,-异丙叉二苯氧基)四羧酸二酐(BPADA)反应制备了3种结构的聚酰亚胺。溶解性实验表明,这3种聚合物在非质子极性溶剂中均显示出良好的溶解性。此外,还对聚酰亚胺薄膜进行了拉伸和动态机械热性能测试。  相似文献   

3.
以邻甲基苯胺和联苯甲醛为起始原料,经一步有机反应,合成了一种新型二胺单体3,3’-二甲基-4,4’-二氨基-联苯基甲烷(1)。将二胺单体(1)分别与4种商品化芳香二酐经一步法高温缩聚,制得了一系列可溶性聚酰亚胺PI,其特性黏度在0.62~0.80dL/g之间。该类聚酰亚胺表现出优异的溶解性能,室温下不仅可以溶于高沸点的甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAc)、二甲基甲酰胺(DMF)溶剂中,而且还能溶于低沸点的CHCl3、CH2Cl2等溶剂中。由该聚合物溶液涂覆所制聚酰亚胺薄膜具有浅的颜色和高的光学透明性,其中由二胺单体1和二苯醚酐所制薄膜的截断波长在346nm,400nm处的透过率超过70%。此外该系列聚酰亚胺还表现出良好的热学性能,玻璃化转变温度在300℃以上。空气和氮气中10%热失重温度分别在400℃和500℃以上。  相似文献   

4.
以邻甲基苯胺和联苯甲醛为起始原料,经一步有机反应,合成了一种新型二胺单体3,3’-二甲基-4,4’-二氨基-联苯基甲烷(1)。将二胺单体(1)分别与4种商品化芳香二酐经一步法高温缩聚,制得了一系列可溶性聚酰亚胺PI,其特性黏度在0.62~0.80dL/g之间。该类聚酰亚胺表现出优异的溶解性能,室温下不仅可以溶于高沸点的甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAc)、二甲基甲酰胺(DMF)溶剂中,而且还能溶于低沸点的CHCl3、CH2Cl2等溶剂中。由该聚合物溶液涂覆所制聚酰亚胺薄膜具有浅的颜色和高的光学透明性,其中由二胺单体1和二苯醚酐所制薄膜的截断波长在346nm,400nm处的透过率超过70%。此外该系列聚酰亚胺还表现出良好的热学性能,玻璃化转变温度在300℃以上。空气和氮气中10%热失重温度分别在400℃和500℃以上。  相似文献   

5.
莫鑫  李光  江建明 《材料导报》2012,26(2):67-71
以2,6-二甲基苯胺和苯甲醛为原料,经一步合成反应,制得了一种高纯二胺单体α,α-(3,5-二甲基-4-氨基)苯基甲烷(BADP),将其与4种商品化芳香二酐缩聚,制得了一系列主链含3,3′,5,5′-四甲基和甲苯基结构的聚酰亚胺,特性黏度在0.57~0.84dL/g之间。该聚酰亚胺表现出优异的溶解性能和光学性能:室温下不仅可以溶于高沸点的NMP、DMAc、DMF和m-Cresol等溶剂中,还能溶于低沸点的CHCl3、CH2Cl2等溶剂中,而且大部分聚合物在这类溶剂中的溶解度可达10%(质量分数)以上;所制得的聚酰亚胺薄膜颜色浅、透明性高,截断波长在341~365nm之间,500nm处的透过率均超过85%。此外,该系列聚酰亚胺还表现出良好的热学性能和力学性能:玻璃化转变温度在333℃以上,空气和氮气中10%热失重在440℃和500℃以上;其薄膜的拉伸强度、断裂伸长率和起始模量分别在62~95MPa、8.4%~15.5%和2.2~3.5GPa之间。  相似文献   

6.
以自制含芴双酚化合物9,9-双(3-叔丁基-4-(4-羟基)芴和对氯硝基苯等为起始原料,经2步有机反应,合成了一种新型含芴和大侧基取代芳香二胺单体——9,9-双(3-叔丁基-4-(4-氨基苯氧基)苯基)芴(2)。利用二胺单体2分别与一系列芳香二酐经一步法高温缩聚,制得了一系列聚酰亚胺——PI 3a~3c。其特性黏度在0.69~0.81 d L/g之间。该类聚酰亚胺表现出优异的溶解性能,室温下不仅可以溶于N-甲基-2-吡咯烷酮、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺等高沸点的有机溶剂,还能溶于低沸点的三氯甲烷、二氯甲烷等溶剂中。该系列聚酰亚胺还表现出良好的热学性能,玻璃化转变温度在285℃以上。空气和氮气中10%热失重温度分别在400℃和500℃以上。所制薄膜的拉伸强度在74.7~85.4 MPa之间,断裂伸长率为6.6%~10.3%,弹性模量1.8~2.7 GPa。  相似文献   

7.
砜基取代高折射率高透明性聚酰亚胺的合成与性能   总被引:1,自引:0,他引:1  
首先合成了同时含有砜基与硫醚键的二胺单体,4,4′-双(4-胺基苯硫基)二苯砜(BADPS).采用BADPS分别与4种二酐单体,3,3′,4,4′-联苯四羧酸二酐(BPDA)、3,3′,4,4′-二苯醚四羧酸二酐(ODPA)、4,4′-双(3,4-二羧基苯硫基)二苯硫醚二酐(3SDEA)以及1,2,3,4-环丁烷四羧酸二酐(CBDA)通过两步聚合工艺制备了一系列聚酰亚胺(PI).制备的PI薄膜具有优良的综合性能,包括良好的热稳定性、可见光波长范围内优良的透明性以及高折射率与低双折射.10mm厚的PI薄膜在450nm处的透光率超过80%.全芳香族PI(PI-1~PI-3)的折射率>1.70,双折射<0.02.  相似文献   

8.
为了开发适于树脂传递模塑(RTM)成型的低熔体黏度热固性聚酰亚胺树脂,采用2,2′,3,3′-三苯二醚四甲酸二酐(3,3′-HQDPA)和3,3′,4,4′-三苯二醚四甲酸二酐(4,4′-HQDPA)的混合物与3种不同的二胺单体合成了3种系列的苯乙炔封端的热固性聚酰亚胺树脂,其中二胺为4,4′-二氨基二苯醚(ODA),4,4’-二氨基-2,2’-双三氟甲基联苯(TFDB)和2-苯基-4,4′-二氨基二苯醚(p-ODA)。文中系统地研究了酰亚胺预聚物的结构和相对分子质量对预聚物的聚集态结构、熔体黏度及对固化后薄膜的热性能、力学性能的影响。研究结果表明,与ODA和TFDB不同,p-ODA的特殊化学结构使得由它合成的酰亚胺预聚物(相对分子质量为750)表现为无定形态,并在低温区具有极低的熔体黏度。它在200℃至280℃区间内任意温度恒温2 h后,熔体黏度都低于1 Pa·s,更适宜RTM成型。  相似文献   

9.
以2,2-双[4-(4-氨基苯氧基)苯基]丙烷(BAPP)和4,4′-二氨基二苯甲烷(MDA)作为二胺单体,3,3′,4,4′-二苯酮四酸二酐(BTDA)作为二酐单体,N-甲基砒咯烷酮(NMP)为溶剂,通过常规的两步法经热亚胺化合成了三元共聚型聚酰亚胺结构胶。采用傅里叶变换红外光谱表征了聚合物的结构;热重-差热分析(TG-DTA)表明,所合成的聚酰亚胺具有良好的热稳定性,在N2气氛中起始降解温度接近500℃,800℃质量保持率大于50%。单搭接拉伸剪切测试结果表明,所得聚酰亚胺结构胶对不锈钢片的室温粘接强度(LSS)高达14.13MPa,350℃下的拉伸剪切强度达1.91MPa。  相似文献   

10.
6FAPE基含氟聚酰亚胺的结构与性能研究   总被引:1,自引:0,他引:1  
利用含氟二胺单体4,4'-双(4-氨基-2-三氟甲基苯氧基)二苯醚(6FAPE),分别与1,2,3,4-环丁烷四酸二酐(CBDA)、3,3',4,4'-二苯醚四酸二酐(ODPA)、3,3',4,4'-联苯四酸二酐(BPDA)、3,3',4,4'-二苯甲酮四羧酸二酐(BTDA)和均苯四甲酸二酐(PMDA)进行低温缩聚反应,经热酰亚胺化制备出5种聚酰亚胺(PI)薄膜,考察了其光学透明性和热性能,研究了聚酰亚胺分子结构与性能的关系.结果表明,CBDA基含氟PI薄膜在可见光波长范围内(400~700nm)具有优异的光学透明性,450nm处的透光率为84.6%,且5种含氟PI薄膜在光通讯波段(1.30μm和1.55μm)均无明显吸收;除CBDA外,含氟PI薄膜均具有良好的热稳定性,5%热失重温度超过530℃;5种含氟PT薄膜的玻璃化转变温度Tg均在200℃以上,且CBDA基舍氟PI薄膜的Tg最高,达到265.5℃.  相似文献   

11.
以2,2′-二甲基-4,4′-二氨基联苯(m-TB)为二胺单体,均苯四甲酸二酐(PMDA)和3,3′,4,4′-联苯四甲酸二酐(BPDA)为二酐单体,N,N′-二甲基乙酰胺(DMAc)为溶剂,采用常规的两步法制备了一系列不同二酐比例的热塑性聚酰亚胺,并通过红外光谱仪、X-射线衍射仪、热重分析仪、紫外光谱仪、动态热分析仪、溶解性测试等对共聚聚酰亚胺的结构和性能进行表征.结果表明:在1 780、1 720、1 500、1 380、1 050和725 cm~(-1)处出现明显的吸收峰,说明成功制备了聚酰亚胺材料;共聚聚酰亚胺只在PMDA与BPDA物质的量比为0.2∶0.8时存在结晶峰,其他比例时均为非晶聚合物;亚胺化后的共聚聚酰亚胺在DMSO、DMAc、DMF、NMP和m-cresol中有溶解性,证明成功制备出热塑性聚酰亚胺薄膜;热塑性共聚PI起始分解温度大于500℃,800℃时的质量保持率在50%以上,具有良好的热稳定性;随着聚合物中BPDA含量的提高,热塑性聚酰亚胺薄膜的玻璃化转变温度呈现下降的趋势.当紫外光波长达到400 nm时,薄膜的透光率高达57.6%,当波长为760 nm时,薄膜透光率均达到100%,成功制备了透光率较高的聚酰亚胺薄膜.  相似文献   

12.
以对二甲苯为原料,通过溴代、偶合、硝化和还原反应成功合成了2,2′,5,5′-四甲基联苯-4,4′-二胺(TMBPDA)。TMBPDA分别与4,4’-双酚A型二醚二酐(BPADA)和4,4′-双酚AF型二醚二酐(FBDA)通过高温一步法缩聚生成聚酰亚胺PI-A和PI-AF。结果表明,两种聚酰亚胺不仅在N-甲基-2-吡咯烷酮(NMP),N,N-二甲基甲酰胺(DMAc)中展示出良好的有机可溶性,同时拥有优良热性能,由差示扫描量热仪(DSC)测得玻璃化转变温度(Tg)分别为251℃和255℃。此外,两种聚酰亚胺薄膜在可见光范围内具有良好的透明性,在450 nm处的透光率均超过了88%。  相似文献   

13.
用4,4′-二氨基二苯醚(ODA)作为二胺,3,3′,4,4′-二苯醚四羧酸二酐(ODPA)及2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐(BPADA)作为二酐,以N,N-二甲基甲酰胺(DMF)为溶剂,通过常规的两步法,合成了可溶性共聚聚酰亚胺。用红外光谱(FT-IR)、差示扫描量热(DSC)、热重分析(TG...  相似文献   

14.
以芳香二酐和自制的3,3'-二甲基-4,4'-二氨基二苯甲烷(DMMDA)二胺为单体,N-甲基吡咯烷酮(NMP)为溶剂,从分子结构的角度出发,设计合成了聚酰胺酸溶液,经化学亚胺化反应制备了高相对分子质量的可溶性聚酰亚胺材料,进一步通过浸没-沉淀相转化法制备出聚酰亚胺基纳滤膜。通过红外光谱、核磁、热重分析、扫描电镜、原子力显微镜等对合成单体和聚酰亚胺基纳滤膜的结构和性能进行了分析和表征。结果表明,成功地合成了DMMDA二胺单体,以该单体为原料制备的聚酰亚胺基纳滤膜具有较高的分离性能,对酸性红94的截留率高达92%,同时具有良好的耐溶剂性及重复使用性。  相似文献   

15.
一种新型含异丙基和大侧基联苯结构二胺单体3,3'-二异丙基-4,4'-二氨基苯基-4″-苯基甲苯(PAPT),与3种二酐通过Yamazaki膦酰化法缩聚制得3种聚芳酰胺薄膜。研究表明,聚合物具有良好的溶解性能,常温下能溶于N-甲基吡咯烷酮(NMP)、N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、N,N-二甲基乙酰胺(DMAc)等溶剂;具有突出的热性能,玻璃化转变温度均高于209℃,氮气氛围下10%热失重温度高于465℃;光学性能优良,截止波长范围在317~338nm,透过率超过80%的波长都大于445 nm。  相似文献   

16.
利用含氟二胺2,2一双[4-(4-氨基-2-三氟甲基苯氧基)苯基]六氟丙烷分别与1,2,3,4-环丁烷四酸二酐、均苯四甲酸二酐、3,3,,4,4'-联苯四酸二酐、3,3',4,4'-二苯醚四酸二酐和3,3',4,4'-二苯酮四酸二酐进行低温缩聚反应,经热酰亚胺化制备出5种含氟聚酰亚胺(PI)薄膜,均表现出优良的综合性能.其中,含脂环PI薄膜在可见光波长范围内(400~700nm)具有优异的光学透明性,450nm处的透光率为84.6%,紫外截止波长为307.2nm,近乎无色透明,且5种含氟PI在光通讯波段(1.30μm和1.55μm)无明显吸收;这些含氟PI均具有良好的溶解性;除含脂环PI的热稳定性稍差外,4种芳香PI薄膜的5%热失重温度均超过519℃,具有良好的热稳定性.  相似文献   

17.
通过分子设计制备一种新型二胺单体3,3'-二异丙基-4,4'-二氨基二苯基-4″-氟苯基甲烷(PAFM)及新型可溶性含氟聚酰亚胺薄膜材料(FPIs)。研究表明,聚合物溶解性能显著,能较好溶于常规有机溶剂,如N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAc)、二甲亚砜(DMSO)、N-甲基吡诺烷酮(NMP)、四氢呋喃(THF)和丙酮;耐热性能突出,玻璃化转变温度高于273℃,氮气中10%热失重温度在470℃以上;光学性能优良,截止波长低于322 nm,波长大于466 nm范围内透过率都在80%以上;疏水性能优异,接触角超过90.8°。  相似文献   

18.
以自制含三氟甲基取代不对称芳香二胺单体——1,4-双(4-氨基-2-三氟甲基苯氧基)-2,3,5-三甲基苯,分别与对苯二甲酸(PTA)、间苯二甲酸(IPA)、4,4-二苯醚二甲酸(OBA)3种商品化二酸单体,经Yamazaki膦酰化法缩聚制得到了一系列新型可溶性聚芳酰胺。该类聚合物的特性黏度在0.68~1.15dL/g之间,具有优异的溶解性能和光学性能。所制聚合物室温下不仅可以溶解在N-甲基-2-吡咯烷酮、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺等沸点较高的有机溶剂中,还能溶解在低沸点的四氢呋喃溶剂中;由该类聚合物所制得的薄膜无色透明,截断波长在331~345nm之间,500nm处的透过率均超过82%。此外该聚芳酰胺还表现出了良好的热学性能和力学性能:玻璃化转变温度在257℃以上,在空气和氮气中10%热失重时的温度分别在413℃和441℃以上;其薄膜的拉伸强度为77.5~88.4 MPa,断裂伸长率在13%~31%,杨氏弹性模量在1.8~2.0GPa。  相似文献   

19.
以4,4′-二氨基二苯砜(DDS)为二胺单体,3,3′4,4′-二苯酮四羧酸二酐(BTDA)、4,4′-氧双邻苯二甲酸酐(ODPA)分别为二酐单体,制得主链含砜基及桥联结构的聚酰亚胺(PI)模塑粉,考察了结构对PI的性能影响。结果表明,2种PI都具有半结晶聚合物的特性,在氮气中和空气中都具有较好的热稳定性,且熔融温度远低于分解温度。  相似文献   

20.
以均苯四甲酸二酐(PMDA)和4,4’-对苯二甲酰二邻苯二甲酸酐(TDPA)为二酐单体,4,4’-(3-氨基苯氧基)二苯甲酮(BABP)为二胺单体,采用两步法低温溶液缩聚合成了系列双酮酐型共聚酰亚胺。采用红外光谱、X射线衍射、差示扫描量热分析、热重分析、拉伸测试和溶解性能测试对聚合物的结构与性能进行了表征,考察了TDPA/PMDA不同摩尔比对共聚酰亚胺溶解性、耐热性和力学性能的影响。结果表明,双酮酐型聚酰亚胺的玻璃化转变温度随TDPA摩尔含量的增加逐渐下降,溶解性能则逐渐提高,当TDPA/PMDA摩尔比为7/3时,共聚酰亚胺具有优良的耐热性能及力学性能,可溶于N,N-二甲基甲酰胺(DMF)等极性溶剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号