首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 703 毫秒
1.
杨贺珍  冉奋 《材料导报》2018,32(21):3697-3705, 3719
电解质作为超级电容器的重要组成部分,对器件性能起着关键性作用。本文对近些年来超级电容器各种电解质,包括水系、有机液体、离子液体、固态/准固态聚合物电解质和氧化还原体系电解质的特点和最新研究成果进行了描述;重点介绍了固态/准固态聚合物电解质的分类及其性能研究概况。提出了发展电位窗口宽、离子电导率高、电化学性能稳定的离子液体和机械强度等综合性能优良的凝胶聚合物电解质是将来超级电容器电解质发展领域的趋势,最后对超级电容器电解质的发展前景进行了展望。  相似文献   

2.
固态电化学器件具有柔性好、安全性能高及能量密度高等优点,属于极有前景的新一代化学能源器件.固态电解质是实现电化学器件固态化的关键,其中石墨烯基聚合物复合电解质由传统聚合物电解质发展而来,是一类含有石墨烯纳米填料和聚合物基体的新型固态电解质,具有较高的离子电导率、良好的加工性能及优异的界面特性,现已成为固态电化学器件研发...  相似文献   

3.
固态聚合物电解质因其质量轻、柔性好,且与电极材料接触良好、界面阻抗小,成为开发新一代高能量密度、高安全性乃至高柔韧性电化学器件的潜在材料,近年来获得了广泛关注。但因其离子电导率低、力学性能差等缺陷也成为限制其进一步商业化的关键问题。通过交联、共混、共聚等手段组成聚合物的复合体系有可能很好地解决这些问题,因此本文首先对聚合物中的离子导电机理进行了简要介绍,旨在从原理的角度阐释上述问题的解决策略;随后综述了近年来多种聚合物基复合电解质在电化学器件中的应用以及改性策略。最后对复合固态聚合物电解质目前面临的基础研究和实际应用问题进行了讨论,给出了解决这些问题的建议,以期为新型聚合物复合固态电解质的设计与制备提供新思路。  相似文献   

4.
传统锂离子电池面临着液态电解液泄漏和易燃等安全问题的挑战。采用固态电解质替换液态电解液可以实现锂离子电池的高安全性和高能量密度。然而,传统的固态电解质膜的制备方法,具有复杂的制备过程以及较高的能耗,为其实际应用增添了挑战。无溶剂法制备固态电解质膜省去了传统制备工艺中的溶剂干燥、溶剂回收等步骤,具有节约能源和环境友好的优点。然而,这项制备固态电解质膜的技术在储能领域的应用尚不成熟,有待于进一步的研究和发展。本综述总结了无溶剂法制备聚合物、无机和复合固态电解质膜的研究进展并阐述了无溶剂制备固态电解质膜这项技术在商业化的过程中面临的挑战,最后对这项技术未来在全固态电池中的实际应用做出展望。  相似文献   

5.
锂离子电池作为重要的能量储存元件在消费类电子产品、电动汽车和可再生能源存储等领域具有广泛的应用。传统液态电解质锂离子电池受到能量密度低、安全性差等诸多缺陷的限制,采用固态电解质替代液态电解质制备新型固态锂离子电池目前备受关注。PEO基固态聚合物电解质由于其设计简单、易于制造、使用安全等优点已被认为是替代传统液体电解质的首选。介绍了当前PEO基聚合物电解质的主要研究种类、特点和性能;阐述了锂离子在PEO基聚合物电解质中的导电机制;分析了与PEO络合的锂盐种类对聚合物电解质的电导率的影响规律;在此基础上提出了几种改善PEO基聚合物电解质性能的措施和方法。  相似文献   

6.
由于在电化学能源存贮与转化器件中所展现出的巨大潜在应用前景,固态聚合物电解质膜的开发受到研究界的广泛关注。基于柔性储能与转换器件的发展,以聚乙烯醇(Polyvinyl alcohol, PVA)为基体的凝胶聚合物电解质(Gel polymer electrolytes, GPEs)因亲水性强,无毒,良好的兼容性以及优异的化学稳定性,是当前研究较多的理想电解质材料。本文从PVA基水凝胶电解质的制备合成原理、方法和性能表征出发,总结和讨论了其基本物理特性和电化学性能,并就PVA基水凝胶电解质在超级电容器、柔性锌空电池、锂离子电池以及太阳能水热电池中的研究和应用进展进行了综述,并对其在该领域未来的发展做出展望。  相似文献   

7.
用全氟醚作为增塑剂对PEO改性,并与双三氟甲烷磺酰亚胺锂复合,制备了全固态聚合物电解质。采用SEM、交流阻抗、稳态电流法及恒电流恒电压充放电等对固态聚合物电解质的性能进行了测试表征,结果表明:m(PFPE)∶m(PEO)=0.6的固态聚合物电解质膜的电导率30℃时为2.6×10-3 S·cm-1,同条件下电解质溶液电导为8.2×10-3 S·cm-1,二者处于同一个数量级;随PFPE的量增加,锂离子的迁移数增大;与液态电解质电池相比,固态聚合物电解质制成的电池具有更好的循环容量保持特性,固态聚合物电解质电池500次循环的容量保持率在88.1%,液态电解质电池循环容量保持率在64.5%左右;固态聚合电解质有很优异的耐高温安全性,在130℃和150℃下经1~2h热箱试验,用固态聚合物电解质制作的锂离子电池没出现明显体积变化,而相同条件下的液态电解质锂离子电池已发生爆裂或起火。  相似文献   

8.
本文采用固相法在900、1000、1100和1200℃煅烧温度条件下合成了Li0.33La0.56TiO3(LLTO)固态电解质材料, 并将其组装为LLTO固态离子电容器。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、电化学阻抗谱(EIS)和循环伏安法(CV)等技术研究了煅烧温度对LLTO固态电解质和固态离子电容器的显微结构、形貌、离子电导率和储能性能的影响。实验表明, 较高的煅烧温度有利于获得性能优异的LLTO固态离子电容器。在室温下, 1200℃煅烧温度制备的固态离子电容器晶粒离子电导率高达 9.6×10-4 S/cm, 且具有明显的双电层电容特性, 在4 V电压窗口下比电容为3.52 mF/g。此外, 固态离子电容器比电容随晶粒电导率的增大而增大, 同时受电极与固态电解质接触面积的影响。  相似文献   

9.
目前锂离子电池由于使用液态电解液面临着诸多问题,如工作温度范围窄、热稳定性差、容易泄露和生成锂枝晶等。发展全固态锂电池是提升电池能量密度和安全性的可行途径之一,而作为锂电池材料研究热点的有机-无机复合固态电解质,由于其兼具有机物和无机物的优点,有望运用于下一代全固态锂电池之中。本文首先概述了固态电解质的种类及传导机制,而后详细阐述了有机-无机复合固态电解质中聚合物基质和锂盐的选择以及不同维度无机填料对电解质性能尤其是力学性能的影响,最后提出了有机-无机复合固态电解质的研究总结与展望。  相似文献   

10.
自修复聚合物材料能够自行修复在加工和使用过程中产生的微观或者宏观损伤,从而解决材料内部微裂纹难以检测和修复的问题,保持其结构和功能的完整性。将自修复聚合物应用于电化学储能器件中,可有效提升器件的安全可靠性和使用寿命,成为近年来的研究热点之一。本文概括介绍了外援型和本征型自修复聚合物材料的修复机理,着重总结了不需要修复剂、且可实现多次可逆修复的本征型自修复聚合物应用于电化学储能领域的研究进展,以储能器件的电极、电解质以及界面为出发点,综述了自修复功能聚合物分别作为高比能电极黏结剂、界面修饰层、可自修复电解质的研究进展,阐述了自修复机理及其对储能器件电化学性能的影响规律,探讨了自修复聚合物材料在储能领域未来的发展方向。  相似文献   

11.
Owing to their safety, high energy density, and long cycling life, all‐solid‐state lithium batteries (ASSLBs) have been identified as promising systems to power portable electronic devices and electric vehicles. Developing high‐performance solid‐state electrolytes is vital for the successful commercialization of ASSLBs. In particular, polymer‐based composite solid electrolytes (PCSEs), derived from the incorporation of inorganic fillers into polymer solid electrolytes, have emerged as one of the most promising electrolyte candidates for ASSLBs because they can synergistically integrate many merits from their components. The development of PCSEs is summarized. Their major components, including typical polymer matrices and diverse inorganic fillers, are reviewed in detail. The effects of fillers on their ionic conductivity, mechanical strength, thermal/interfacial stability and possible Li+‐conductive mechanisms are discussed. Recent progress in a number of rationally constructed PCSEs by compositional and structural modulation based on different design concepts is introduced. Successful applications of PCSEs in various lithium‐battery systems including lithium–sulfur and lithium–gas batteries are evaluated. Finally, the challenges and future perspectives for developing high‐performance PCSEs are proposed.  相似文献   

12.
There is a growing shift from liquid electrolytes toward solid polymer electrolytes, in energy storage devices, due to the many advantages of the latter such as enhanced safety, flexibility, and manufacturability. The main issue with polymer electrolytes is their lower ionic conductivity compared to that of liquid electrolytes. Nanoscale fillers such as silica and alumina nanoparticles are known to enhance the ionic conductivity of polymer electrolytes. Although carbon nanotubes have been used as fillers for polymers in various applications, they have not yet been used in polymer electrolytes as they are conductive and can pose the risk of electrical shorting. In this study, we show that nanotubes can be packaged within insulating clay layers to form effective 3D nanofillers. We show that such hybrid nanofillers increase the lithium ion conductivity of PEO electrolyte by almost 2 orders of magnitude. Furthermore, significant improvement in mechanical properties were observed where only 5 wt % addition of the filler led to 160% increase in the tensile strength of the polymer. This new approach of embedding conducting-insulating hybrid nanofillers could lead to the development of a new generation of polymer nanocomposite electrolytes with high ion conductivity and improved mechanical properties.  相似文献   

13.
Composite solid electrolytes are considered to be the crucial components of all-solid-state lithium batteries, which are viewed as the next-generation energy storage devices for high energy density and long working life. Numerous studies have shown that fillers in composite solid electrolytes can effectively improve the ion-transport behavior, the essence of which lies in the optimization of the ion-transport path in the electrolyte. The performance is closely related to the structure of the fillers and the interaction between fillers and other electrolyte components including polymer matrices and lithium salts. In this review, the dimensional design of fillers in advanced composite solid electrolytes involving 0D–2D nanofillers, and 3D continuous frameworks are focused on. The ion-transport mechanism and the interaction between fillers and other electrolyte components are highlighted. In addition, sandwich-structured composite solid electrolytes with fillers are also discussed. Strategies for the design of composite solid electrolytes with high room temperature ionic conductivity are summarized, aiming to assist target-oriented research for high-performance composite solid electrolytes.  相似文献   

14.
High‐energy all‐solid‐state lithium (Li) batteries have great potential as next‐generation energy‐storage devices. Among all choices of electrolytes, polymer‐based systems have attracted widespread attention due to their low density, low cost, and excellent processability. However, they are generally mechanically too weak to effectively suppress Li dendrites and have lower ionic conductivity for reasonable kinetics at ambient temperature. Herein, an ultrastrong reinforced composite polymer electrolyte (CPE) is successfully designed and fabricated by introducing a stiff mesoporous SiO2 aerogel as the backbone for a polymer‐based electrolyte. The interconnected SiO2 aerogel not only performs as a strong backbone strengthening the whole composite, but also offers large and continuous surfaces for strong anion adsorption, which produces a highly conductive pathway across the composite. As a consequence, a high modulus of ≈0.43 GPa and high ionic conductivity of ≈0.6 mS cm?1 at 30 °C are simultaneously achieved. Furthermore, LiFePO4–Li full cells with good cyclability and rate capability at ambient temperature are obtained. Full cells with cathode capacity up to 2.1 mAh cm?2 are also demonstrated. The aerogel‐reinforced CPE represents a new design principle for solid‐state electrolytes and offers opportunities for future all‐solid‐state Li batteries.  相似文献   

15.
With the development of flexible electronic devices and large‐scale energy storage technologies, functional polymer‐matrix nanocomposites with high permittivity (high‐k) are attracting more attention due to their ease of processing, flexibility, and low cost. The percolation effect is often used to explain the high‐k characteristic of polymer composites when the conducting functional fillers are dispersed into polymers, which gives the polymer composite excellent flexibility due to the very low loading of fillers. Carbon nanotubes (CNTs) and graphene nanosheets (GNs), as one‐dimensional (1D) and two‐dimensional (2D) carbon nanomaterials respectively, have great potential for realizing flexible high‐k dielectric nanocomposites. They are becoming more attractive for many fields, owing to their unique and excellent advantages. The progress in dielectric fields by using 1D/2D carbon nanomaterials as functional fillers in polymer composites is introduced, and the methods and mechanisms for improving dielectric properties, breakdown strength and energy storage density of their dielectric nanocomposites are examined. Achieving a uniform dispersion state of carbon nanomaterials and preventing the development of conductive networks in their polymer composites are the two main issues that still need to be solved in dielectric fields for power energy storage. Recent findings, current problems, and future perspectives are summarized.  相似文献   

16.
Conventional liquid electrolytes based lithium‐ion batteries (LIBs) might suffer from serious safety hazards. Solid‐state polymer electrolytes (SPEs) are very promising candidate with high security for advanced LIBs. However, the quintessential frailties of pristine polyethylene oxide/lithium salts SPEs are poor ionic conductivity (≈10−8 S cm−1) at 25 °C and narrow electrochemical window (<4 V). Many innovative researches are carried out to enhance their lithium‐ion conductivity (10−4 S cm−1 at 25 °C), which is still far from meeting the needs of high‐performance power LIBs at ambient temperature. Therefore, it is a pressing urgency of exploring novel polymer host materials for advanced SPEs aimed to develop high‐performance solid lithium batteries. Aliphatic polycarbonate, an emerging and promising solid polymer electrolyte, has attracted much attention of academia and industry. The amorphous structure, flexible chain segments, and high dielectric constant endow this class of polymer electrolyte excellent comprehensive performance especially in ionic conductivity, electrochemical stability, and thermally dimensional stability. To date, many types of aliphatic polycarbonate solid polymer electrolyte are discovered. Herein, the latest developments on aliphatic polycarbonate SPEs for solid‐state lithium batteries are summarized. Finally, main challenges and perspective of aliphatic polycarbonate solid polymer electrolytes are illustrated at the end of this review.  相似文献   

17.
Supercapacitors have great potential applications for electronic devices, and energy recyling and storage areas owing to their high power density, long cycle life, high safety and excellent performance at low temperatures. The electrode materials and electrolytes are two key factors that influence their performance. The electrode materials used in supercapacitors include carbon materials such as activated carbons, carbon nanotubes, graphene, carbon nanofibers and carbon nano-onions, metal oxides, conductive polymers and their composites. The electrolytes are aqueous electrolytes, organic electrolytes or ionic liquids. Here research progress on the electrode materials and liquid electrolytes for supercapacitors is summarized, their advantages and disadvantages are analyzed, and new electrode materials and electrolytes are suggested.  相似文献   

18.
Due to their high ionic conductivity and adeciduate mechanical features for lamination, sulfide composites have received increasing attention as solid electrolyte in all‐solid‐state batteries. Their smaller electronegativity and binding energy to Li ions and bigger atomic radius provide high ionic conductivity and make them attractive for practical applications. In recent years, noticeable efforts have been made to develop high‐performance sulfide solid‐state electrolytes. However, sulfide solid‐state electrolytes still face numerous challenges including: 1) the need for a higher stability voltage window, 2) a better electrode–electrolyte interface and air stability, and 3) a cost‐effective approach for large‐scale manufacturing. Herein, a comprehensive update on the properties (structural and chemical), synthesis of sulfide solid‐state electrolytes, and the development of sulfide‐based all‐solid‐state batteries is provided, including electrochemical and chemical stability, interface stabilization, and their applications in high performance and safe energy storage.  相似文献   

19.
Solid‐state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid‐state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D‐print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li7La3Zr2O12 solid electrolyte. Using these 3D‐printing ink formulations to further study and optimize electrolyte structure could lead to solid‐state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号