首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
不同接种物对微生物燃料电池利用氨氮产电的影响   总被引:1,自引:0,他引:1  
文章以厌氧污泥和河底沉积物分别启动单室微生物燃料电池MFC,并通过改变氨氮浓度以及外电阻大小考察其对于MFC产电和氨氮去除的影响。结果表明,不同接种物启动的MFC对氨氮浓度的耐受性不同,厌氧污泥MFC在氨氮浓度为488.2 mg/L时最大输出功率Pmax为454.6 mW/m2,而沉积物MFC的Pmax为309.6mW/m2,出现在氨氮浓度为127.5 mg/L时;小电阻有利于氨氮的去除,但会限制MFC的产电,当外电阻从1 000Ω降低到10Ω时,厌氧污泥MFC氨氮去除率从46.1%提高到71.9%,沉积物MFC则从41.0%提高到了69.3%,并且厌氧污泥接种的MFC氨氮去除率与电阻的线性关系要优于沉积物MFC。  相似文献   

2.
微生物燃料电池(microbial fuel cell,MFC)是一种新型的生物电化学装置,能将可生物降解有机物中的化学能直接转化成电能,而阳极材料性能是影响MFC性能的重要因素之一。通过对阳极材料进行改性和修饰可以有效地增大其比表面积、生物相容性等,以提高其微生物负载率和电子传递速率,进而提高MFC的产电性能。本文全面介绍和总结了近年来国内外关于微生物燃料电池阳极材料的研究进展,分析微生物燃料电池阳极材料在规模放大应用中存在的问题,并对微生物燃料电池阳极材料今后的发展方向进行了展望。  相似文献   

3.
为了分离纯化可适应渗滤液极端环境的产电菌,以广州市白云区李坑和兴丰两处垃圾填埋场获取的渗滤液为底物运行微生物燃料电池(microbial fuel cell, MFC),待稳定输出多个周期后剪取阳极碳布进行单菌落培养和电镜扫描。结果显示,各组渗滤液底物MFC均能成功启动。李坑四季样的MFC峰值电压分别为0.334、0.331、0.321、0.328 V;兴丰四季样的MFC峰值电压分别为0.512、0.54、0.523、0.536 V。对各组渗滤液底物微生物燃料电池的阳极进行菌株分离纯化并单菌落培养构建阳极微生物系统发育树,发现经过MFC驯化后的阳极菌株具有较高丰度和差异性;SEM扫描发现各组实验中菌株均吸附在阳极碳布上形成稳定的膜结构,根据产电呼吸的基本电子传递机制推测渗滤液底物MFC中的微生物通过与阳极直接接触来传递电子。  相似文献   

4.
微生物燃料电池(简称MFC)是一种能够把微生物作为催化剂分解有机物质从而产生电能的新型环境友好型能源装置.到目前为止,对于微生物燃料电池内在连续流的条件下流体穿过多孔阳极的对流现象,人们已经做了大量研究.然而,流体穿过多孔阳极的力学机理和多孔介质与MFC的定量关系还不是很清晰.实验发现当MFC装置的距离在某个特定范围时输出功率明显增大.基于这些实验得到的数据,我们利用格子Boltzmann方法研究了阳极与阴极之间的距离和多孔阳极达西数对MFC输出功率的影响.结果表明阳极与阴极之间的距离影响MFC中流体的速度和流体在多孔阳极中的滞留时间.此外,还发现多孔阳极的达西数能够影响MFC的输出功率.  相似文献   

5.
以碳毡和碳布为电极材料,老龄垃圾渗滤液为阳极底物构建生物阴极型微生物燃料电池(MFC),考察碳毡和碳布分别作为阴极和阳极材料时对MFC明在阳极材料相同时,碳毡阴极MFC料相同时,碳布阳极MFC输出电压和功率密度最大(分别为294 mV、95.31 mW/m~3)、化学需氧量和氨氮去除率最大(分别为58.78%、74.38%);阳极、阴极均为碳布的MFC内阻最小(308Ω),阳极、阴极均为碳毡的MFC内阻最大(347Ω)。  相似文献   

6.
邢延  曹腾良  张开心  李慧 《节能》2020,39(5):40-42
为了提高污泥微生物燃料电池(MFC)产电性能和污泥处理效果,基于超声波破壁预处理技术,构建了以超声预处理污泥为底物的单室空气阴极污泥MFC,以污泥MFC的输出电压、最大功率密度、内电阻、污泥浓度和TCOD浓度为考察指标,探究不同声能密度预处理对污泥MFC产电性能及污泥降解效能的影响,结果表明,随着预处理超声密度的增加,MFC的产电性能和污泥处理效果得到有效提升。与未经预处理的污泥MFC相比,预处理声能密度为1.5 W/m L时,MFC稳定输出电压提高90.19%,最大输出功率密度提高135.43%,污泥减量效果提升68.8%,TCOD去除效果提高76.17%。本研究实验结果证明采用超声波对污泥进行预处理,能够有效提高污泥MFC的产电性能和污泥降解效率。  相似文献   

7.
采用石墨板为阴极构建了单室空气阴极微生物燃料电池(MFC),以混合菌种接种,并以乙酸钠和碳酸氢钠为碳源,研究了该MFC在间歇运行条件下的产电性能、电池内阻情况和COD去除率。结果表明,最高输出电压随着周期数增加而增加,由0.075 9 V上升到0.200 6 V,最大输出功率密度为34.80 mW/m2;在一个运行周期内,电池内阻随着时间的延长而逐渐增大,由376.6Ω上升到682.0Ω,电池内阻的增大将导致输出电压降低。COD去除率由起始的49.23%达到最大值86.99%,说明此单室空气阴极微生物燃料电池在产电的同时处理污水的效果也较好。  相似文献   

8.
主要针对城市垃圾热解预处理过程所产生的渗滤液进行研究。首先改变城市垃圾堆放温度和堆放时间,发现城市垃圾于40℃堆放6 d后所得的渗滤液中生物需氧量(Biological Oxygen Demand,BOD)、氨氮浓度约为20800、1410 mg/L,B/C比、B/N比分别为0.32和14.8,营养物质较均衡,易于生化处理,且将其进行微生物燃料电池(Microbial Fuel Cell,MFC)处理时,电池可获得0.29 V的稳定输出电压。随后,以上述渗滤液为MFC阳极基质,考察廉价易得的Mn O2作为阴极催化剂对空气阴极单室MFC电池性能以及渗滤液中有机污染物去除率的影响。结果发现,由于Mn O2催化氧还原,加速了MFC阴极接受电子的速度,使得MFC电池性能有较大提高。其中,MFC的最大功率密度由0.16 W/m3提高到0.88 W/m3,而电池稳定输出电压明显升高至0.43 V,且阳极渗滤液中BOD和NH4+-N去除率也分别达72.9%和91.6%,比对照MFC分别提高8.1%和5.0%。  相似文献   

9.
微生物燃料电池中高效产电菌解析   总被引:1,自引:0,他引:1  
以厌氧处理的淀粉工艺废水出水为基质,成功地实现了无介体MFC连续产电,同时系统中COD去除率达到70%,电池的输出电压为475mV。采用构建16S rRNA基因文库、随机测序的方法,分别对开放和闭合电路的阳极表面的微生物群落结构进行研究。结果表明:系统中出现的已知高效产电细菌只占6%(分别为地杆菌Geobacter和梭菌Clostridium)。通过对开放和闭合电路的阳极表面的微生物群落结比对,提出几类可能存在的高效产电相关细菌Alcaligenes monasteriensis,Comamonas denitrificans,Dechloromonas sp.,为高效产电细菌的研究提供了新的研究思路和理论依据。  相似文献   

10.
以模拟有机废水为基质的单池微生物燃料电池的产电性能   总被引:1,自引:0,他引:1  
利用自制单池微生物燃料电池,以破碎厌氧颗粒污泥上清液接种,以葡萄糖模拟废水为基质,成功获得了电能。含有质子交换膜的微生物燃料电池经过206h的连续运行,最高功率密度达到了141.5mW/m2,库仑效率最大为6.9%;不含质子交换膜的微生物燃料电池具有更好的产电能力,其最高功率密度为269mW/m2,库仑效率为6.6%;扫描电镜观察发现,阳极表面的产电细菌以一种短杆菌为主,在质子交换膜表面的细菌则以椭球菌为主。  相似文献   

11.
用乳制品废水作为阳极室底物构建双室MFC反应器,厌氧池污泥混合菌作为生物催化剂,阴极室分别使用不同浓度的KMnO4溶液和溶解氧DO作为电子受体,调节MFC影响因子与该厌氧池对应,计算试验数据并与厌氧池废水处理效果进行比较,同时观察MFC的产电性能。结果表明:双室MFC的产电效率和稳定性随着阴极室KMnO4浓度的升高而提高;当溶解氧DO作为电子受体时,MFC产电性能较低,具有成本低、无污染的优点;经不同组MFC分别处理乳制品废水后,COD去除率均优于普通厌氧池的处理效果。  相似文献   

12.
《可再生能源》2016,(12):1891-1896
为研究不同浓度磷酸盐和不同投料密度对餐厨垃圾厌氧消化接种物驯化过程中微生物群落多样性变化的影响,在中温(35±1℃)条件下,分别添加磷酸盐680,1 360,2 720 mg/L,每天分别投料0.5,1.0 g和2.0 g餐厨垃圾驯化接种物,采用Illumina高通量测序技术研究不同驯化阶段的微生物多样性。结果表明:通过投加磷酸盐和餐厨垃圾驯化接种物可以提高接种物中微生物群落多样性,且有助于形成适应降解餐厨垃圾的微生物群落。微生物群落多样性随着驯化过程逐渐地改变,磷酸盐的浓度和餐厨垃圾的投料密度可显著影响微生物群落多样性,其中投加1 360 mg/L的磷酸二氢钾,且每天投料1.0 g,驯化到第8~16 d时,接种物能维持系统稳定,且含有相对高的微生物多样性。  相似文献   

13.
以双室微生物燃料电池为研究对象,考察了电极间距、电极面积比和阳极室填充活性炭颗粒,阳极室填充液浓度、pH值、流通速度对微生物燃料电池输出电压和功率密度的影响,通过分析建立最优双室微生物燃料电池模型。研究结果表明,微生物燃料电池的最大输出电压为544.3 mV,最大功率密度为341.38 mW/m2,在微生物燃料电池运行1 500 min后,利用极化曲线法测定电池的内阻为375Ω。  相似文献   

14.
为考察外加直流电场作用对微生物燃料电池阳极微生物的影响,采用双室型MFC反应器,在启动开始时分别加以-5,-3,-1,0,+1,+3,+5 V的直流电场,作用时间依次取2 min,30 min,1 h,24 h。结果表明,外加直流电场能够对微生物燃料电池阳极室内微生物的生长产生影响,作用时间为30 min时效果较为明显,提高作用时间后效果变化不大;±1 V的电场强度作用促进微生物的生长;较低的直流电场(±1 V)作用能够促进微生物燃料电池的阳极生物挂膜,且负电场促进效果更好,而较高的直流电场(+3 V和±5 V)作用不利于甚至损害阳极生物挂膜。  相似文献   

15.
谢淼  徐龙君  程李钰 《太阳能学报》2018,39(9):2641-2647
处理过的老龄垃圾渗滤液与好氧污泥悬浊液的混合液按不同体积配比(0%、25%、50%、75%和100%),作为阴极液,构建生物阴极型微生物燃料电池(MFC),研究其产电特征以及对阳极底物和阴极液中污染物的处理效果。结果表明,处理过的老龄垃圾渗滤液作为阴极液时,MFC对化学需氧量(COD)和氨氮的去除率较其作为阳极液时分别提高2.27倍和42%。处理过的老龄垃圾渗滤液与好氧活性污泥悬浊液的混合液作为阴极液可提高MFC的产电性能和对污染物的去除效果。以体积比为75%的处理过的老龄垃圾渗滤液作为阴极液时,能显著提高MFC产电效果,输出电压和输出功率密度最大,分别为498 mV、295.2 mW/m~3,内阻最小为244Ω,阳极COD去除率最高为44.81%。  相似文献   

16.
以锌掺杂碳纳米管电极为阳极,柔性石墨为阴极,葡萄糖为阳极室供给基质,构建双室微生物燃料电池(MFC),考察锌掺杂量、葡萄糖浓度、温度等因素对MFC产电性能及有机物降解率影响。结果表明,锌掺杂改性的碳纳米管,能加速阳极产电微生物膜形成,提高微生物膜产电能力。在外电阻2300Ω,葡萄糖浓度1257mg/L,Zn S掺杂量0.5 g,温度40℃时,MFC性能最佳,其最大输出电压为1030 m V,最大输出功率31.2 m W/m2,COD去除率92%。  相似文献   

17.
以某生活污水处理站厌氧池活性污泥为混合菌种,以葡萄糖为模拟生活废水,构建单室微生物燃料电池.利用微生物燃料电池实验生活废水降解与同步产电.实验结果表明:当葡萄糖浓度控制10mmol·L-1,pH值为7,温度控制在35℃时,其输出电压最大为0.486V,COD去除率最高为46.11%.微生物燃料电池(MFC)具有最佳的电化学性能.  相似文献   

18.
以双室微生物燃料电池(MFC)为研究对象,构建阳极为糖蜜废水、阴极为不同金属离子废水的微生物燃料电池,对其产电性能和去污能力进行测定。结果表明:微生物燃料电池可同时处理有机废水和金属离子废水,其中,Ag~+为阴极液时,其MFC稳定性最好,最高输出电压为198 m V、最大功率密度为23.1 m W/m~2、内阻为500Ω,Cu~(2+)为阴极液时分别为149 m V、13.9 m W/m~2、600Ω,Zn~(2+)为阴极液时分别为16 m V、1.9×10~(-6)m W/m~2、900Ω。阳极化学需氧量(COD)去除率以Ag~+为阴极液时最高,可达72%,Cu~(2+)和Zn~(2+)分别为54%和19.2%。阴极金属离子去除率Ag~+为72%、Cu~(2+)42%、Zn~(2+)19.8%。  相似文献   

19.
微生物燃料电池(MFC)技术及其发展前景的研究   总被引:2,自引:0,他引:2  
本文论述了能源和环境面临的问题与微生物燃料电池(MFC)的关系,介绍了MFC产能原理和效率及其国内外研究进展,分析了利用湿地微生物构建生物质能源循环式微生物电池的潜力,指出了MFC作为一种可再生的清洁新能源的广阔前景。  相似文献   

20.
以体积分数为60%的老龄垃圾渗滤液为单室无膜空气阴极微生物燃料电池底物,考察电极间距分别为1、2、3、4、5 cm时电池产电性能及底物中物污染物的去除效果。结果表明,间距为2 cm时输出电压和最大功率密度最大,间距为4 cm时输出电压和最大功率密度最小;电极间距为1~3 cm时电池内阻随电极间距的增大而增大,而电极间距大于3 cm时电池内阻随电极间距的增大而减小。电极间距为2 cm时,微生物燃料电池(MFC)对老龄垃圾渗滤液中化学需氧量(COD)和氨氮去除率最高;5个电池的库伦效率分别为35.6%、27.6%、35.4%、14.9%和14.9%,单室无膜空气阴极MFC可在一定程度上提高老龄垃圾渗滤液的可生化性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号