首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以氧化石墨烯(GO)与苯胺作为前驱物,在高温高压下一步水热反应,合成了聚苯胺/石墨烯(PANI/Gr)复合材料。利用紫外可见光谱、傅里叶变换红外光谱、扫描电子显微镜研究了PANI/Gr复合材料的结构和微观形貌,进一步利用电化学工作站探究了PANI/Gr复合材料的电化学性能。研究了水热反应时苯胺与GO的投料质量比对所得复合材料的结构与电化学性能的影响。循环伏安法和恒电流充放电测试结果表明由于聚苯胺与石墨烯的相互作用,复合材料的电容性能比单组分的聚苯胺和石墨烯要高。这说明通过GO与苯胺的一步水热反应成功制备了具有优良电容性能的PANI/Gr复合材料。  相似文献   

2.
为了拓展石墨烯凝胶在超级电容器方面的应用,采用氨水与水合肼作为掺杂剂和还原剂,通过与氧化石墨烯的水热反应制备了氮掺杂石墨烯凝胶,并进一步运用原位聚合的方法在氮掺杂石墨烯凝胶上负载聚苯胺,得到氮掺杂石墨烯/聚苯胺复合凝胶. 利用X射线衍射、扫描电子显微镜对产物的结构和微观形貌进行表征,采用循环伏安、恒电流充放电等方法测试其电化学性能. 结果表明,氮掺杂石墨烯/聚苯胺复合凝胶与纯氮掺杂石墨烯凝胶相比,电化学性能有显著的提高. 当扫描速率为10 mV/s时,复合凝胶的比电容约为500 F/g;在恒电流充放电实验中,当电流密度增加到10 A/g时,复合凝胶的比电容仍然保持在约400 F/g. 当循环伏安扫描1 000圈后,比电容的保持率达到80%. 这些表明氮掺杂石墨烯/聚苯胺复合凝胶拥有突出的电化学性能,也表明了氮掺杂石墨烯/聚苯胺在超级电容器方面将会有很好的应用前景.  相似文献   

3.
石墨烯/聚苯胺复合材料作为超级电容器的自支撑电极材料具有巨大的潜力。以磷酸为磷源的水热还原法制备磷掺杂还原氧化石墨烯(P-rGO)水凝胶,再以P-rGO水凝胶为基质在3种溶剂(正己烷、水和四氯化碳)中负载聚苯胺,合成磷掺杂还原氧化石墨烯/聚苯胺(P-rGO/PANI)复合水凝胶。利用X射线衍射、扫描电子显微镜表征产物的微观形貌与结构,运用电化学工作站测试该材料的电化学性能。以1 mol/L的H2SO4溶液为电解质,经过1 000圈循环测试后,材料的比电容保持率均为81%以上,表明其有作为超级电容器电极材料的潜质。该研究为开发出低成本、高性能的超级电容器电极材料提供了实验依据和理论指导。  相似文献   

4.
通过水热法制备氨基功能化改性石墨烯(NFG)和还原氧化石墨烯(RGO)。利用透射电镜(TEM)、扫描电镜(SEM)和X射线衍射仪(XRD)对制备材料的形貌和结构进行表征;利用循环伏安法、恒电流充放电和电化学交流阻抗技术对NFG和RGO的超级电容器性能进行测试。在放电电流密度为1 A/g时, NFG和RGO分别在1 mol/L的H_2SO_4溶液中的比电容为307 F/g和134 F/g。经过2 000次循环充放电后, NFG和RGO的比电容分别为初始值的97.7%和95.5%,结果表明制备的超级电容器电极材料具有优异的充放电性能和循环稳定性。  相似文献   

5.
以低成本的无尘纸为基底吸附氧化石墨烯,再通过水热处理得到还原氧化石墨烯,最后将苯胺原位聚合到无尘纸@还原氧化石墨烯上,制备得到无尘纸@还原氧化石墨烯/聚苯胺复合材料。运用循环伏安法、恒电流充放电法、阻抗法等测试该复合材料的电化学性能。结果表明,与无尘纸@还原氧化石墨烯相比,无尘纸@还原氧化石墨烯/聚苯胺复合材料的电化学性能有显著提高,在扫描速率为20 mV/s时,比电容达到280 F/g。基于无尘纸@还原氧化石墨烯/聚苯胺复合材料组装的电容器有良好的柔性,充电后可点亮白色LED灯。因此,具有柔性与电容性能的无尘纸@还原氧化石墨烯/聚苯胺复合材料能用于超级电容器领域。  相似文献   

6.
在改进的Hummers法制备氧化石墨烯(GO)的基础上,采用一步水热法达到3个目的:合成ZnO、GO还原为还原氧化石墨烯(RGO)和生成ZnO/RGO复合材料,制备得到ZnO纳米球镶嵌于RGO纳米片的复合材料,此方法能够实现RGO与ZnO均匀分布并解决了ZnO颗粒黏连的问题。研究表明:在不同的电解液中,电极材料表现出的电化学性能会有所不同,在Na2SO4电解液中测试时,ZnO/RGO复合电极材料在0.2 A·g-1下由充放电曲线所得的比电容高达100.8 F·g-1,比ZnO的比电容高310%;在KOH电解液中ZnO/RGO复合电极材料的比电容为53.5 F·g-1,比ZnO的比电容高72.6%;同时表明RGO与ZnO所构成的复合材料比ZnO的电化学性能有显著提升,这归功于高导电性RGO的复合及ZnO与RGO的协同效应。  相似文献   

7.
聚吡咯与石墨烯都具有良好的导电性,并易于与其他材料复合.为了改善金属氧化物材料的电化学性能,采用两步法,先合成氧化石墨烯/聚吡咯复合物,利用高锰酸钾与乙二醇在微波下与氧化石墨烯/聚吡咯复合物反应,制备四氧化三锰/聚吡咯/还原氧化石墨(Mn3O4/PPy/r GO)复合材料,利用扫描电镜、傅立叶红外光谱和X射线衍射对Mn3O4/PPy/r GO复合材料的微观形貌及结构进行表征,并通过循环伏安法和计时电位法对其电化学性能进行测试.结果表明,电流密度为0.5 A/g时,Mn3O4/PPy/r GO复合材料的电容达到546 F/g,经过800圈循环伏安测试后的电容保持率为94.8%.表明Mn3O4/PPy/r GO复合材料具有良好的电化学可逆性与电化学稳定性.其优良的电化学性能可能是Mn3O4/PPy/r GO复合材料中三种组分共同作用的结果,可望应用于新型超级电容器.  相似文献   

8.
采用化学法在氧化石墨烯(GO)表面垂直生长出聚苯胺(PANI)纳米线阵列。利用SEM、FT-IR、Raman对所制备的GO/PANI复合材料的形貌及结构进行表征。该复合材料的电化学电容性能通过循环伏安(CV)、交流阻抗(EIS)和恒流充放电进行表征。研究结果表明:在0.2A/g的电流密度下,GO/PANI电极首次充放电比电容可高达469F/g,高于纯PANI电极的452F/g,复合材料的电荷传递电阻为1Ω·cm2。同时,GO/PANI的循环稳定性及倍率特性得到极大的增强。  相似文献   

9.
为了拓展石墨烯凝胶在超级电容器方面的应用,采用氨水、水合肼作为还原剂和掺杂剂,通过与氧化石墨烯的水热反应制备了氮掺杂石墨烯凝胶,并采用X射线光电子能谱,元素分析、扫描电子显微镜对产物的结构与微观形貌进行表征,采用循环伏安法和计时电位法测试其电化学性能. 结果表明,在氧化石墨烯的水热反应体系中引入氮掺杂剂,不仅能得到具有三维多孔结构的有一定力学强度的凝胶,而且经过氮掺杂后石墨烯的电化学性能较纯石墨烯的有明显提高. 当扫描速率为10 mV/s时,氮掺杂石墨烯的比电容为196 F/g;当电流密度为1 A/g时,氮掺杂石墨烯的比电容达到217 F/g,当循环伏安扫描1 000圈后,电容保持率达到80%. 这表明氮掺杂石墨烯凝胶具有优异的电化学性能,在超级电容器方面有很好的应用前景.  相似文献   

10.
采用改进的Hummers方法制备氧化石墨,在乙醇溶液中超声分散120 min得到氧化石墨烯悬浮液。采用滴涂法在玻碳电极表面得到氧化石墨烯薄膜,通过电化学技术在氧化石墨烯薄膜上沉积得到聚乙酰苯胺纳米线,成功制备了聚乙酰苯胺/氧化石墨烯纳米复合材料(PAANI/GO)。利用扫描电镜、循环伏安法和恒电流充放电测试技术对合成材料的形貌和充放电性能进行表征和测试。结果表明,直径为80 nm的聚乙酰苯胺纳米线均匀分散在氧化石墨烯表面,制备的复合材料在1 mol/L高氯酸溶液中,当循环伏安扫速为10 m V/s时,可以获得706 F/g的比电容,PAANI的比电容为285 F/g。聚乙酰苯胺/氧化石墨烯纳米复合材料具有优异的充放电稳定性,当恒电流为1A/g时,循环充放电1 000次比电容是初始值的90%。  相似文献   

11.
研制出超长周期、高比电容的超级电容器电极是未来储能器件的关键。采用了一种简便有效的自组装水热法合成了二氧化锰/还原氧化石墨烯(MnO2/RGO)复合气凝胶。通过一系列表征技术对其形貌和结构进行了分析。其电化学性能测试结果表明,当电流密度为1A/g和40A/g时,MnO2/RGO比电容分别可达到252F/g和146F/g,具有较好的倍率性能。此外,复合气凝胶在20A/g的高电流密度下,经过10 000次循环后,其比电容为初始电容的87.8%,说明此复合材料具有优异的循环稳定性。杰出的电化学性能归功于:1)三维(3D)石墨烯气凝胶不仅为MnO2粒子提供了良好的支撑,而且促进了离子和电子的快速转移;2)MnO2粒子可以抑制RGO的团聚和重叠。  相似文献   

12.
以氧化石墨(GO)为原料,利用超临界CO2和甲醇混合流体的黏度低、密度可控、表面张力为零等优点,以二甲基铵硼烷(DMAB)为还原剂将GO还原为石墨烯(RGO),并将PtRuNi、PtRu、Pt等金属纳米粒子成功地负载到石墨烯表面。通过X射线衍射(XRD)、透射电子显微镜(TEM)等方法分析了PtRuNi/RGO等复合物的结构特征,并用电化学的方法比较了PtRuNi/RGO,PtRu/RGO,Pt/RGO与PtRuNi/XC-72,PtRu/XC-72,Pt/XC-72对乙醇氧化的电催化活性。结果显示,所制备的PtRuNi/RGO具有更高的乙醇电催化效能。  相似文献   

13.
采用原位聚合的方法制备氧化石墨烯(GO)/聚丙烯酸(PAA)复合物,然后通过湿法纺丝制备GO/PAA复合纤维,最后经氢碘酸还原得到还原氧化石墨烯(RGO)/PAA复合纤维。扫描电子显微镜(SEM)观察发现RGO/PAA复合纤维表面具有RGO的褶皱结构,并且随着PAA含量的增加表面出现聚合物微粒。电导率测试结果表明,当RGO/PAA质量比为10/1时,电阻率最低,导电性能最好,少量的PAA能有效提高复合纤维的导电性。RGO10/PAA1的拉伸强度较高,断裂伸长率较小,其拉伸电阻最为稳定。导电纤维用于导电通路线具有良好的导电性能,这为其作为柔性导体的应用提供了依据。  相似文献   

14.
采用催化刻蚀法,制备出作为一种大比表面积、高导电性的、已被广泛用作超级电容器的二维碳电极材料。石墨烯的多孔材料由于其多孔结构能够加快离子的扩散,使得比电容进一步增加,增强了其双电层电容性能。多孔还原氧化石墨烯(hrGO),并将其用作超级电容器的电极材料。同时利用透射电子显微镜、X射线电子能谱和电化学技术对制备出的hrGO进行表征。利用循环伏安法和恒电流充放电技术对比了未刻蚀孔的还原氧化石墨烯(rGO)和hrGO的超级电容性能。当电位在-1~0 V范围内时,hrGO的比电容要大于未刻蚀的rGO的比电容,当扫速为10 mV/s时,其比电容可达到33 mF/cm~2;当电流密度为0.2 mA/cm~2时,hrGO的比电容仍要大于未刻蚀的rGO的比电容,与循环伏安测试中得到的结论一致。在充放电达到3 000次循环后,比电容保持在初始值的87%。上述结果表明该方法制备的多孔石墨烯具有良好的超级电容性能,适用于超级电容器负极材料。  相似文献   

15.
为了得到新型导电聚合物/石墨烯纳米复合材料,采用偶氮染料甲基橙为掺杂剂,过硫酸铵为氧化剂,一步法制备了纳米片状的聚吡咯/氧化石墨烯复合材料,通过傅里叶红外光谱、扫描电子显微镜等测试,对聚吡咯/氧化石墨烯复合材料的结构和形貌进行表征;通过循环伏安法对其进行电化学性能测试.结果表明:由于甲基橙分子中含有的磺酸根阴离子,甲基橙分子掺杂在聚吡咯分子链中,影响了聚吡咯分子的共轭结构;在聚吡咯/氧化石墨烯复合材料中保留了氧化石墨烯的片状结构,表明吡咯单体首先被吸附到氧化石墨表面,进而在氧化石墨烯表面发生聚合.聚吡咯/氧化石墨烯复合材料均匀的片状纳米结构,在循环伏安测试中显现出具有良好的电容特性,将来可以应用到商业电容器领域.  相似文献   

16.
通过原位聚合非二次掺杂制备了高导电性聚苯胺/氧化石墨烯复合材料。采用盐酸为掺杂酸,研究了聚苯胺/氧化石墨烯的微观形貌;探讨了盐酸浓度及氧化石墨烯(GO)用量对反应过程和复合材料导电性的影响。结果表明:聚苯胺(PANI)以球状物的形式均匀地包覆在GO表面;盐酸浓度超过0.5mol·L-1,反应诱导期明显缩短,复合材料的导电性显著提高。在聚合体系中加入GO可延长聚合反应诱导期,但随着GO用量的增加反应诱导期缩短。当盐酸浓度为0.5mol·L-1,GO与苯胺单体质量比超过2%时,制备的PANI/GO复合材料中GO形成导电通路,电导率较纯PANI提高一个数量级,达到1.4S·cm-1。  相似文献   

17.
采用水热法将氧化石墨烯和氧化碳黑均匀分散体系还原,制得石墨烯/碳黑复合材料。用X射线衍射、场发射扫描电镜、循环伏安法、恒流充放电和电化学阻抗谱等技术,对该复合材料的结构及其电化学性能进行表征。结果表明:纳米碳黑颗粒成功插入到石墨烯片层之间,且有效抑制了石墨烯的团聚,增大了石墨烯片层间距,形成具有开放纳米通道的三维结构;该复合材料的比电容和倍率性能明显优于单一的石墨烯。  相似文献   

18.
将超声分散处理的氧化石墨直接与氢氧化钾按一定比例混合,经过高温活化处理,制备得到活性石墨烯。采用XRD、TEM以及氮气吸脱附对活性石墨烯的微观结构、表面形貌以及比表面积进行表征分析,并考察材料的电化学电容特性。结果表明:经过直接活化制备得到的活性石墨烯具有很高的比表面积(高达1220m~2/g)和较大的孔容积(0.995cm~3/g)。电化学性能测试结果表明:在1A/g电流密度下,6mol/L KOH溶液中活性石墨烯电极材料的质量比电容能达到111F/g,经过5000次充放电循环后,电容保持率仍为99.2%。  相似文献   

19.
先通过软模板法制备具有纳米管状结构的聚吡咯(PPy),再以此PPy与氧化石墨烯(GO)为前驱物,通过水热法制备具有三维结构的聚吡咯/石墨烯(PG)复合水凝胶。研究了PPy用量对复合水凝胶的影响。利用扫描电子显微镜对其形貌进行表征,用循环伏安法和恒电流充放电法对复合凝胶的电化学性能进行了研究。结果表明,当m(PPy)∶m(GO)在1.5∶1到2.5∶1之间时,可以形成完整的PG复合水凝胶,复合水凝胶可承受自身重量约1 000倍的压力。PG复合水凝胶具有良好的电化学性能,当恒电流充放电测试的电流密度增加到20 A/g时,复合水凝胶的比电容仍然大于400 F/g。这些结果表明PG复合水凝胶在超级电容器领域有着较好的应用前景。  相似文献   

20.
为了得到高性能的石墨烯材料,采用水合肼、茶多酚与抗坏血酸3种不同的还原剂将氧化石墨烯还原制备得到石墨烯.通过红外光谱、X射线衍射、接触角对产物的结构进行表征,采用四探针法测试电导率,循环伏安法和计时电位法测试电化学性能.水合肼、茶多酚与抗坏血酸这3种还原剂都能有效地将氧化石墨烯结构中的亲水基团去除,得到疏水的石墨烯.通过比较3种还原剂制备的石墨烯的电化学性能,发现通过茶多酚还原得到的石墨烯的导电性能最好,当电流密度为3 A/g时,茶多酚还原得到的石墨烯电容性能达到609 F/g,保持率达到87.71%.这表明由茶多酚还原得到的石墨烯具有更为优良的电化学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号