首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 272 毫秒
1.
以硬脂酸钠为原料,在熔融氢氧化钠体系中,以制备含氧化合物含量低的烃类液体燃料油为目标进行裂解实验,分别考察反应温度、载气流速和进料速率对裂解液组成的影响。对所得裂解液采用GC-MS进行分析,可得其成分主要为烷烃、烯烃、部分芳香烃及少量含氧化合物。在反应温度425℃,载气流速0.7 L/min,进料速率1.4 g/min的条件下,裂解液中各组分的含量为烷烃60.2%,烯烃32.5%,芳香烃4.2%,含氧化合物3.1%。  相似文献   

2.
文章采用共沉淀方法合成了不同配比的Ni O/Al2O3催化剂,采用固定床反应器研究了不同配比的催化剂对甘油水蒸气重整制氢的影响。通过气体产品含量、甘油及水蒸气转化率等指标的分析得出:甘油和水蒸气转化率及氢气产率在450~650℃时随温度升高而增加,其中Ni O/Al2O3(Ni O=27.43%,Al2O3=72.57%)催化剂由于Ni含量较高,表现出高制氢催化活性,其氢气产率在650℃时达到最高的12.7%,甘油转化率也达到最高值96.9%。进行CO2原位吸附的甘油重整吸附强化制氢时,得到了更高纯度的氢。进行多次循环再生实验时,随着循环次数的增多,由于吸附剂再生不完全,氢气纯度会随着循环次数增多有所下降。  相似文献   

3.
在自制的热裂解装置中,以氮气(N2)为载气,研究物质的量之比为7∶6熔融Zn Cl2-KCl作用下生物质热裂解过程,考察无机添加剂、生物质原料及进料速率对生物质热裂解产物产率的影响,并采用气质联用仪(GC/MS)对液相产物组分进行分析。结果表明:Fe Cl3、Co Cl2和Ni Cl2分别对热裂解的气相、液相和固相产物生成的促进作用明显;在相同热裂解条件下,红木屑热裂解液相产物产率高于秸秆、果壳和油菜花;进料速率增加能促进固相和液相产物的生成,抑制气相产物的生成;热裂解液相产物主要以酮类、酯类、酚类和羧酸类为主,含氧量较高,需精制。  相似文献   

4.
《可再生能源》2019,(12):1739-1744
文章采用HSC Chemistry软件进行多组分生物油重整制氢(包括普通重整和吸附强化重整)过程的热力学分析,研究反应温度、S/C和Ca/C对氢气浓度和氢气产率等指标的影响。研究结果表明:两种重整制氢过程的氢气产率和氢气浓度均随着S/C的增大而增大,但在S/C3后增幅不再明显;当S/C=3时,普通重整制氢过程的氢气产率和氢气浓度均仅为70%左右,最佳重整反应温度高达830℃;加入吸附剂CaO后,吸附强化重整过程的氢气产率和氢气浓度较普通重整制氢过程有大幅提升,且最佳重整反应温度显著下降,当S/C=3时,最佳重整反应温度为480℃,氢气产率和氢气浓度分别为97.2%和99.7%。  相似文献   

5.
姬登祥  黄加艳  张咪 《太阳能学报》2018,39(12):3505-3510
以杉木屑为原料,Li_2CO_3-Na_2CO_3-K_2CO_3(LNK)为热介质和催化剂进行生物质热裂解制富氢气体的研究,考察金属氧化物、镍盐、载气流量和反应温度等参数对H_2产率及气体组成分布的影响。研究表明:金属氧化物能促进氢气生成,Co_2O_3作用下H_2产率和气体总产率最高,为285.0和644.0 mL/g;镍盐中Cl~-对H_2生成的促进效果优于SO_4~(2-);载气流量为43.6 L/h时H_2产率和可燃气产率最高,为357.0和525.0 mL/g;高温利于H_2生成,反应温度为565.0℃时H_2体积浓度达到96.9%。本研究为生物质热裂解制富氢气体提供参考。  相似文献   

6.
辛娅  曹红亮  王殿龙 《太阳能学报》2016,37(10):2675-2681
为探索湿牛粪热解气化制富氢气体的参数,以湿牛粪为研究对象,在固定床反应器内采用单因素试验法,对不同温度、水分质量分数、升温速率和进料温度条件下,热解气产率、H_2产率、热解气成分、热值和碳转化率的变化进行实验研究和分析。结果表明:随着温度的升高和水分质量分数的增加,H_2容积百分含量、热解气产率和热值增大;当反应温度从700℃升至900℃时,H_2容积百分含量从35.99%增至49.19%,单位干物质产气量从277.37 mL/g增至924.26 mL/g,气体的热值从3681.58 kJ/m~3增至6167.56 kJ/m~3。升温速率和进料温度对H_2容积百分含量和产气率的影响不明显,在不同升温速率和进料温度条件下,H_2容积百分含量波动幅度较小。  相似文献   

7.
以大豆油为原料,在自制的固定床反应器中,以制备含氧量低的烃类液体燃料为目标,考察以碱性氧化物CaO为催化剂时载气流速、温度、催化剂用量、进料量等诸因素对裂解液组成产生的影响,并采用气质联用仪(GC-MS)表征其组成。结果表明,在不通载气,反应温度450℃,重时空速(WHSV)为0.38 h-1条件下,裂解液收率55.8%,烃类化合物含量81.4%,其中烷烃、烯烃含量达到65.3%,C8以内及C9~C16组分含量分别为46.9%、43.7%;CaO用量的增加能促进大豆油裂解脱羧,有效改善裂解液组成;裂解液经燃料性能测定,表明其具有较好的燃料性能。  相似文献   

8.
纤维素废弃物稀酸水解残渣制氢研究   总被引:1,自引:0,他引:1  
李文志  颜涌捷  任铮伟  黄秒 《太阳能学报》2007,28(11):1248-1252
对纤维素废弃物水解残渣催化气化制氢进行了研究,考察了气化温度、催化温度、催化剂颗粒粒径和S/B (单位时间内进入气化器中水蒸汽质量与生物质质量之比)4个主要参数对气体组成和氢气产率的影响并和以木屑为原料催化气化制氢进行了比较。在试验范围内提高气化温度、催化温度和S/B的值以及减小催化剂颗粒粒径对提高氢产率有利,其中气化温度和S/B对提高氢产率影响较大。气化温度在800~850℃内较为理想,催化剂颗粒的适宜粒径为2~3mm,S/B取1.5~2.0较佳;和木屑制氢相比,使用水解残渣制取的气体中CO和CO_2的体积百分比小,H_2/CO的值大,氢气含量高,有利于后续处理,且氢产率大,对制氢有利。  相似文献   

9.
亓伟  张志凯  付明 《太阳能学报》2016,37(6):1504-1508
以木炭为催化剂,在固定床反应器中对甘油水蒸气重整制氢进行研究。结果表明:随着空速的增大,氢产率、潜在氢产率和碳转化率逐渐减小;随着温度的升高,氢产率、潜在氢产率和碳转化率增大;S/C的增大在一定程度上有助于促进氢产率、潜在氢产率和碳转化率的增大。在温度为800℃,S/C为4∶1,空速为1.5 h~(-1)时,氢气产率、潜在氢产率分别为114.31 g/kg和128.30 g/kg,碳转化率为89.08%。  相似文献   

10.
稻壳连续热解特性研究   总被引:5,自引:0,他引:5  
在自行研制的生物质连续热解反应装置上进行稻壳连续热解和二次裂解实验研究。随着稻壳热解温度的提高,炭产率降低,气体产率增加,液体产率先增加后减少;随着滞留时间的减少,炭产率、液体产率增加,气体产率减少。稻壳热解气以CO2和CO为主,且二者为竞争关系,热解温度提高,CO2产量降低,CH4、H2、C2H4、C2H6产量增加,CO的产率变化不大;滞留时间对热解气组分影响不大。二次裂解温度提高,裂解气中的H2、CH4、C2H4含量明显增加,二次裂解温度为800℃时,H2产率达到12%。稻壳500℃热解挥发物600℃二次裂解木醋液中醋酸含量高达49.44%,焦油中检测到的物质主要为丙酮和异丙醇。  相似文献   

11.
对多相态条件下环己烷的连续脱氢反应进行研究,考察盐浴温度、进料速率以及催化剂(Raney-Ni)用量对环己烷连续脱氢反应的影响。研究发现:当盐浴温度370℃,进料速率25mL/h,催化剂用量3g时,环己烷连续脱氢反应系统的综合性能达到最佳,其产氢速率可达27mL/min,生成氢气的纯度为88%,环己烷的脱氢转化率为8.2%。对290~410℃盐浴温度下环己烷连续脱氢表观反应动力学的研究表明,反应的表观活化能约为12.57kJ/mol。  相似文献   

12.
采用生物油-甲醇催化重整制氢。在微型固定反应装置上通过正交法试验设计,对生物油甲醇混合比例、反应温度、水碳比、进样流速等因素进行了系统的试验。在选择的最佳反应条件下,氢气产率和碳转化率分别为34.89%及63.34%。  相似文献   

13.
生物质基粗甘油反应蒸馏制备羟基丙酮   总被引:1,自引:0,他引:1  
以亚铬酸铜为催化剂,采用反应蒸馏工艺,通过实验考察了反应温度、甘油浓度、催化剂用量、反应物进料流量等因素对粗甘油脱水制羟基丙酮反应的影响.研究结果表明,在半连续操作条件下,反应温度对甘油转化率、羟基丙酮选择性和羟基丙酮收率有较大的影响;亚铬酸铜作为粗甘油脱水制羟基丙酮反应的催化剂容易失活.在该实验的装置中,适宜的反应条件为:反应温度范围为220~240%,甘油浓度为16.37~17.75mol/L,催化剂用量为45g/L,反应物进料流量为8ml/min.  相似文献   

14.
为改善甘油重整制氢反应在转化率、氢产率以及抑制积碳方面都与热力学平衡存在较大差距的问题,设计开发了整体式重整催化剂.考察了涂层组分、比例对整体式催化剂理化特性及其在甘油水蒸气重整制氢反应中催化性能的影响.通过考察Ce-Zr物质的量比及La的添加对催化剂活性的影响,确定了Ce-Zr-La物质的量比为1∶1∶1为最优条件.整体式催化剂的活性得到明显改善,在甘油质量分数为10%,空速为3.07,h-1时,在温度考察范围内甘油完全转化为气相产物,氢气选择性递增,并趋于平稳,最高可达90.85%;随着空速增大,甘油质量分数的增加,氢气选择性减小,甘油气相转化率降低,但仍可保持较好的转化效果.  相似文献   

15.
生物质气化制氢的模拟   总被引:1,自引:0,他引:1  
以秸秆为研究对象,利用Aspen P lus软件建立气化反应器模型,对生物质气化制氢进行模拟计算.探讨不同反应条件,包括气化温度、生物质与蒸汽质量配比以及催化剂对富氢气体成分的影响.计算结果表明,未加催化剂条件下,采用生物质蒸汽气化技术可获得体积分数为6000/以上的富氢燃料气,增大蒸汽与生物质质量配比有利于氢气产率的提高;添加CaO、MgO催化剂可较大幅度地提高氢气产率,氢气体积分数最大可达到9400/,其中CaO对生物质气化制氢过程的催化作用非常显著.  相似文献   

16.
为充分回收高温炉渣颗粒的余热,设计了回转窑热解反应装置。为验证此装置的可行性,对生物质气化制氢进行了试验研究,并对影响气化性能的主要因素,如气化温度(650~950℃)和水蒸气/生物质当量比S/B(0~3.0)进行了研究。结果表明:温度是影响生物质气化反应的主要因素,高温可以降低焦油和焦炭产率,提高气体产量,增加燃气中氢气含量;水蒸气的加入,有利于焦油和低分子碳氢化合物的气化重整以及焦炭的反应,降低焦油产量,提高气体产量,增加燃气中氢气含量,但是过量的水蒸气会导致反应器内温度下降,不利于反应进行。当S/B为2.20时,气化燃气中氢气含量达到最大值53.6%。  相似文献   

17.
通过热力学、动力学及通量平衡分析,采用Aspen Plus软件建立固体氧化物电解(SOEC)制氢的热力学平衡模型,并与实验结果进行对比验证。分析运行温度、压力、阴极水蒸气摩尔分数和阳极空气流量对系统运行特性的影响,并建立考虑余热利用的SOEC制氢系统模型,研究余热利用对制氢效率的影响。当电流密度为1.0 A/cm~2时,不同操作条件下的系统可利用热量占总输入能量的比例在26.53%~46.63%之间;在采用余热利用时,余热利用率可达52.27%以上,系统制氢效率可提高14.43%~26.54%。在1223.15 K、0.1 MPa下,阴极通入50 mol/h含水量为50%的氢气、阳极通入10 mol/h空气,电流密度约为0.78 A/cm~2时,制氢效率达到最大值90.56%,与不采用余热利用条件下相比提高约25.89%。  相似文献   

18.
生物质二次裂解制取氢气的研究   总被引:3,自引:0,他引:3  
采用生物质热解及二次裂解的方法制取富氢气体.通过对生物质热解产生的气液体成份进行二次裂解,实现热解组分中焦油等含氢化合物的深度转化,提高产品气体中氢气的含量,同时解决了热解产品气中焦油不易去除的难题,得到洁净的富氢气体.实验选用稻壳为原料,分析了热解温度和物料滞留时间等因素对热解气体成份的影响,比较了热解气体和二次裂解气体成份的变化,同时分析了水蒸汽、催化剂等因素对裂解气体成份的影响.实验结果表明,热解温度和物料滞留时间的增加提高了热解气体中氢气的含量,二次裂解、水蒸汽和催化剂的引入都能在一定程度上提高产品气中H2的含量.实验最终表明,氢气体积含量可达到60%以上.  相似文献   

19.
选择乙酸作为生物质快速裂解油(生物油)的模型物,自制了一系列Ni基催化剂,进行水蒸汽催化重整制氢研究,实验结果表明Ni/Al_2O_3催化剂添加碱性氧化物MgO或(与)La_2O_3可以使得催化剂的活性有重大改善。Al_2O_3载体负载Ni金属后能够减缓碳的沉积速率,Ni/Al_2O_3添加MgO与(或)La_2O_3能够有效减少碳的沉积速率。选择催化剂Ni/MgO-La_2O_3-Al_2O_3以反应气中的H_2、CO、CH_4、CO_2产率为考察指标,考察反应温度、水碳比、进料流量对水蒸汽催化重整乙酸制氢反应的影响,获得较佳的条件为:反应温度为750~850℃,水碳摩尔比[W]/[C]为5~9,进料流量为15~25mL/h,H_2产率较高,大于80%。  相似文献   

20.
Fe_2O_3/γ-Al_2O_3催化裂解生物质制氢研究   总被引:1,自引:0,他引:1  
在自行研制的生物质连续热解反应装置上进行了稻壳连续热解和二次催化裂解制氢试验研究,所用Fe_2O_3/γ-Al_2O_3催化剂采用浸渍法制备。考察了Fe/Al催化剂焙烧温度及二次催化裂解温度对裂解气中H_2含量和裂解液体组分的影响。试验结果表明:Fe_2O_3/γ-Al_2O_3催化剂对H_2有较大的选择性,当Fe/Al=0.7、催化剂焙烧温度为550℃、二次裂解温度为700℃时,H_2产率达到34.8%;稻壳直接二次裂解液体产物中主要为醋酸,含量达49.44%,催化裂解后主要为丙酮,含量达到50.56%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号